首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The detection of anabolic androgenic steroids (AAS) is one of the most important topics in doping control analysis. Gas chromatography coupled to (tandem) mass spectrometry (GC–MS(/MS)) with electron ionization and liquid chromatography coupled to tandem mass spectrometry have been traditionally applied for this purpose. However, both approaches still have important limitations, and, therefore, detection of all AAS is currently afforded by the combination of these strategies. Alternative ionization techniques can minimize these drawbacks and help in the implementation of a single method for the detection of AAS. In the present work, a new atmospheric pressure chemical ionization (APCI) source commercialized for gas chromatography coupled to a quadrupole time‐of‐flight analyzer has been tested to evaluate the ionization of 60 model AAS. Underivatized and trimethylsylil (TMS)‐derivatized compounds have been investigated. The use of GC–APCI–MS allowed for the ionization of all AAS assayed irrespective of their structure. The presence of water in the source as modifier promoted the formation of protonated molecules ([M+H]+), becoming the base peak of the spectrum for the majority of studied compounds. Under these conditions, [M+H]+, [M+H‐H2O]+ and [M+H‐2·H2O]+ for underivatized AAS and [M+H]+, [M+H‐TMSOH]+ and [M+H‐2·TMSOH]+ for TMS‐derivatized AAS were observed as main ions in the spectra. The formed ions preserve the intact steroid skeleton, and, therefore, they might be used as specific precursors in MS/MS‐based methods. Additionally, a relationship between the relative abundance of these ions and the AAS structure has been established. This relationship might be useful in the structural elucidation of unknown metabolites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The microalga Haematococcus pluvialis produces the pigment astaxanthin mainly in esterified form with a multitude of fatty acids, which results in a complex mixture of carotenol mono‐ and diesters. For rapid fingerprinting of these esters, matrix‐assisted laser desorption ionization time of flight mass spectrometry (MALDI‐TOF/TOF‐MS) might be an alternative to traditional chromatographic separation combined with MS. Investigation of ionization and fragmentation of astaxanthin mono‐ and diester palmitate standards in MALDI‐TOF/TOF‐MS showed that sodium adduct parent masses [M + Na]+ gave much simpler MS2 spectra than radical / protonated [M]+● / [M + H]+ parents. [M + Na]+ fragments yielded diagnostic polyene‐specific eliminations and fatty acid neutral losses, whereas [M]+● / [M + H]+ fragmentation resulted in a multitude of non‐diagnostic daughters. For diesters, a benzonium fragment, formed by polyene elimination, was required for identification of the second fatty acid attached to the astaxanthin backbone. Parents were forced into [M + Na]+ ionization by addition of sodium acetate, and best signal‐to‐noise ratios were obtained in the 0.1 to 1.0 mM range. This method was applied to fingerprinting astaxanthin esters in a crude H. pluvialis extract. Prior to MALDI‐TOF/TOF‐MS, the extract was fractionated by normal phase Flash chromatography to obtain fractions enriched in mono‐ and diesters and to remove pheophytin a, which compromised monoester signals. All 12 types of all‐trans esterified esters found in LC were identified with MALDI‐TOF/TOF‐MS, with the exception of two minor monoesters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The electrospray ionization (ES) mass spectrum of a trisodium azacryptate derived from a template reaction of sodium 2,6-diformyl-4-methylphenolate (sdmp) with 2,2′,2″-triaminoethylamine (tren) was investigated and compared with those by fast atom bombardment (FAB), atmospheric pressure chemical ionization (APCI) and electronic ionization (EI) methods. Dinuclear transition metal complexes of this hexaimine macrobicyclic ligand obtained by transmetallation were also studied by ES mass spectra. An [M2L]+ species has been observed for divalent metal complexes, and an [MLH]+ species for a trivalent metal complex. The possible mechanism of the fragmentation process is discussed.  相似文献   

4.
A group of rhenium (I) complexes including in their structure ligands such as CF3SO3‐, CH3CO2‐, CO, 2,2′‐bipyridine, dipyridil[3,2‐a:2′3′‐c]phenazine, naphthalene‐2‐carboxylate, anthracene‐9‐carboxylate, pyrene‐1‐carboxylate and 1,10‐phenanthroline have been studied for the first time by mass spectrometry. The probe electrospray ionization (PESI) is a technique based on electrospray ionization (ESI) that generates electrospray from the tip of a solid metal needle. In this work, mass spectra for organometallic complexes obtained by PESI were compared with those obtained by classical ESI and high flow rate electrospray ionization assisted by corona discharge (HF‐ESI‐CD), an ideal method to avoid decomposition of the complexes and to induce their oxidation to yield intact molecular cation radicals in gas state [M]+. and to produce their reduction yielding the gas species [M]–.. It was found that both techniques showed in general the intact molecular ions of the organometallics studied and provided additional structure characteristic diagnostic fragments. As the rhenium complexes studied in the present work showed strong absorption in the UV–visible region, particularly at 355 nm, laser desorption ionization (LDI) mass spectrometry experiments could be conducted. Although intact molecular ions could be detected in a few cases, LDI mass spectra showed diagnostic fragments for characterization of the complexes structure. Furthermore, matrix‐assisted laser desorption ionization (MALDI) mass spectra were obtained. Nor‐harmane, a compound with basic character, was used as matrix, and the intact molecular ions were detected in two examples, in negative ion mode as the [M]–. species. Results obtained with 2‐[(2E)‐3‐(4‐tert‐buthylphenyl)‐2‐methylprop‐2‐enylidene] malononitrile (DCTB) as matrix are also described. LDI experiments provided more information about the rhenium complex structures than did the MALDI ones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Methylation is an essential metabolic process in the biological systems, and it is significant for several biological reactions in living organisms. Methylated compounds are known to be involved in most of the bodily functions, and some of them serve as biomarkers. Theoretically, all α‐amino acids can be methylated, and it is possible to encounter them in most animal/plant samples. But the analytical data, especially the mass spectral data, are available only for a few of the methylated amino acids. Thus, it is essential to generate mass spectral data and to develop mass spectrometry methods for the identification of all possible methylated amino acids for future metabolomic studies. In this study, all N‐methyl and N,N‐dimethyl amino acids were synthesized by the methylation of α‐amino acids and characterized by a GC‐MS method. The methylated amino acids were derivatized with ethyl chloroformate and analyzed by GC‐MS under EI and methane/CI conditions. The EI mass spectra of ethyl chloroformate derivatives of N‐methyl ( 1–18 ) and N,N‐dimethyl amino acids ( 19–35 ) showed abundant [M‐COOC2H5]+ ions. The fragment ions due to loss of C2H4, CO2, (CO2 + C2H4) from [M‐COOC2H5]+ were of structure indicative for 1–18 . The EI spectra of 19–35 showed less number of fragment ions when compared with those of 1–18 . The side chain group (R) caused specific fragment ions characteristic to its structure. The methane/CI spectra of the studied compounds showed [M + H]+ ions to substantiate their molecular weights. The detected EI fragment ions were characteristic of the structure that made easy identification of the studied compounds, including isomeric/isobaric compounds. Fragmentation patterns of the studied compounds ( 1–35 ) were confirmed by high‐resolution mass spectra data and further substantiated by the data obtained from 13C2‐labeled glycines and N‐ethoxycarbonyl methoxy esters. The method was applied to human plasma samples for the identification of amino acids and methylated amino acids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Comprehensive analysis of high‐resolution mass spectra of aged natural dammar resin obtained with Fourier transform ion cyclotron resonance mass spectrometer (FT‐ICR‐MS) using matrix‐assisted laser desorption/ionization (MALDI) and atmospheric pressure chemical ionization (APCI) is presented. Dammar resin is one of the most important components of painting varnishes. Dammar resin is a terpenoid resin (dominated by triterpenoids) with intrinsically very complex composition. This complexity further increases with aging. Ten different solvents and two‐component solvent mixtures were tested for sample preparation. The most suitable solvent mixtures for the MALDI‐FT‐ICR‐MS analysis were dichloromethane‐acetone and dichloromethane‐ethanol. The obtained MALDI‐FTMS mass spectrum contains nine clusters of peaks in the m/z range of 420–2200, and the obtained APCI‐FTMS mass spectrum contains three clusters of peaks in the m/z range of 380–910. The peaks in the clusters correspond to the oxygenated derivatives of terpenoids differing by the number of C15H24 units. The clusters, in turn, are composed of subclusters differing by the number of oxygen atoms in the molecules. Thorough analysis and identification of the components (or groups of components) by their accurate m/z ratios was carried out, and molecular formulas (elemental compositions) of all major peaks in the MALDI‐FTMS and APCI‐FTMS spectra were identified (and groups of possible isomeric compounds were proposed). In the MALDI‐FTMS and APCI‐FTMS mass spectrum, besides the oxidized C30, triterpenoids also peaks corresponding to C29 and C31 derivatives of triterpenoids (demethylated and methylated, correspondingly) were detected. MALDI and APCI are complementary ionization sources for the analysis of natural dammar resin. In the MALDI source, preferably polar (extensively oxidized) components of the resin are ionized (mostly as Na+ adducts), whereas in the APCI source, preferably nonpolar (hydrocarbon and slightly oxidized) compounds are ionized (by protonation). Either of the two ionization methods, when used alone, gives an incomplete picture of the dammar resin composition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Phosphate esters are important commercial products that have been used both as flame retardants and as plasticizers. To analyze these compounds by gas chromatographic mass spectrometry, it is important to understand the mass spectra of these compounds using various ionization modes. This paper is a systematic overview of the electron impact (EI), electron capture negative ionization (ECNI) and positive chemical ionization (PCI) mass spectra of 13 organophosphate esters. These data are useful for developing and optimizing analytical measurements. The EI spectra of these 13 compounds are dominated by ions such as H4PO4+, (M ? Cl)+, (M ? CH2Cl)+ or (M)+ depending on specific chemical structures. The ECNI spectra are generally dominated by (M ? R)?. The PCI spectra are mainly dominated by the protonated molecular ion (M + H)+. The branching of the alkyl substituents, the halogenation of the substituents and, for aromatic phosphate esters, ortho alkylation of the ring are all significant factors controlling the details of the fragmentation processes. EI provides the best sensitivity for the quantitative measurement of these compounds, but PCI and ECNI both have considerable qualitative selectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The positive electron impact (EI) and isobutane chemical ionization (CI) mass spectra of six nitramine nitrates were studied with the aid of some accurate mass measurements. In the EI spectra, β fission relative to both the nitramine and nitrate ester is important. In the CI spectra a major ion occurs at [MH – 45]+ and was found to be mainly due to [M + 2H ? NO2]+. All of the compounds except N-(2 hydroxyethyl)-N-(2′,4′,6′-trinitrophenyl)nitramine nitrate gave an [MH]+ ion. The [MH – 45]+ ion in the isobutane CI mass spectra of tetryl is also due to [M + 2H ? NO2]+.  相似文献   

9.
Many metabolomic applications use gas chromatography/mass spectrometry (GC/MS) under standard 70 eV electron ionization (EI) parameters. However, the abundance of molecular ions is often extremely low, impeding the calculation of elemental compositions for the identification of unknown compounds. On changing the beam‐steering voltage of the ion source, the relative abundances of molecular ions at 70 eV EI were increased up to ten‐fold for alkanes, fatty acid methyl esters and trimethylsilylated metabolites, concomitant with 2‐fold absolute increases in ion intensities. We have compared the abundance, mass accuracy and isotope ratio accuracy of molecular species in EI with those in chemical ionization (CI) with methane as reagent gas under high‐mass tuning. Thirty‐three peaks of a diverse set of trimethylsilylated metabolites were analyzed in triplicate, resulting in 342 ion species ([M+H]+, [M–CH3]+ for CI and [M]+ . , [M–CH3]+ . for EI). On average, CI yielded 8‐fold more intense molecular species than EI. Using internal recalibration, average mass errors of 1.8 ± 1.6 mm/z units and isotope ratio errors of 2.3 ± 2.0% (A+1/A ratio) and 1.7 ± 1.8% (A+2/A ratio) were obtained. When constraining lists of calculated elemental compositions by chemical and heuristic rules using the Seven Golden Rules algorithm and PubChem queries, the correct formula was retrieved as top hit in 60% of the cases and within the top‐3 hits in 80% of the cases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Ion–molecule reactions between the α‐phenylvinyl cation and isomeric naturally occurring phenols were investigated using a quadruple ion trap mass spectrometer. The α‐phenylvinyl cation m/z 103, generated by chemical ionization from phenylacetylene, reacts with neutral aromatic compounds to form the characteristic species: [M + 103]+ adduct ions and the trans‐vinylating product ions [M + 25]+, which correspond to [M + 103]+ adduct after the loss of benzene. Isomeric differentiation of several ring‐substituted phenols was achieved by using collision‐induced dissociation of the [M + 103]+ adduct ions. This method also showed to be effective in the differentiation of 4‐ethylguaiacol from one of its structural isomers that displays identical EI and EI/MS/MS spectra. The effects of gas‐phase alkylation with phenylvinyl cation on the dissociation behavior were examined using mass spectrometryn and labeled derivatives. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
We have developed a combined EI/FI source for gas chromatography/orthogonal acceleration time‐of‐flight mass spectrometry (GC/oaTOFMS). In general, EI (electron ionization) and FI (field ionization) mass spectra are complementary: the EI mass spectrum contains information about fragment ions, while the FI mass spectrum contains information about molecular ions. Thus, the comparative study of EI and FI mass spectra is useful for GC/MS analyses. Unlike the conventional ion sources for FI and EI measurements, the newly developed source can be used for both measurements without breaking the ion source vacuum or changing the ion source. Therefore, the combined EI/FI source is more preferable than the conventional EI or FI ion source from the viewpoint of the reliability of measurements and facility of operation. Using the combined EI/FI source, the complementarity between EI and FI mass spectra is demonstrated experimentally with n‐hexadecane (100 pg): characteristic fragment ions for the n‐alkane such as m/z 43, 57, 71, and 85 are obtained in the EI mass spectrum, while only the parent peak of m/z 226 (M+) without any fragment ions is observed in the FI mass spectrum. Moreover, the field desorption (FD) measurement is also demonstrated with poly(ethylene glycol)s M600 (10 ng) and M1000 (15 ng). Signals of [M+H]+, [M+Na]+ and [M+K]+ are clearly detected in the FD mass spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Electron ionization (EI) spectra and both positive and negative chemical ionization (CI) spectra have been obtained for four isoquinolinium ylides and two pyridinium ylides. Electron transfer reactions dominate the CI mass specra. The base peak in negative chemical ionization is the [M] ion, formed by electron capture. In the positive methane CI spectra the molecular ion, [M], is relatively more intense than [MH]+ showing electron transfer to be the main positive ionization process. In the positive ammonia CI spectra, proton transfer to give [MH]+ is the main ionization process, but electron transfer is also observed. The EI spectra show fragmentations in which the aromatic nitrogen moiety retains the charge and fragmentation is by loss of radicals or small neutral molecules from the side-chains. Radical driven reactions are proposed to explain these spectra.  相似文献   

13.
The chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX) and many related degradation products produce poorly diagnostic electron ionization (EI) mass spectra by transmission quadrupole mass spectrometry. Thus, chemical ionization (CI) is often used for these analytes. In this work, pseudomolecular ([M+H]+) ion formation from self-chemical ionization (self-CI) was examined for four VX degradation products containing the diisopropylamine functional group. A person-portable toroidal ion trap mass spectrometer with a gas chromatographic inlet was used with EI, and both fixed-duration and feedback-controlled ionization time. With feedback-controlled ionization, ion cooling (reaction) times and ion formation target values were varied. Evidence for protonation of analytes was observed under all conditions, except for the largest analyte, bis(diisopropylaminoethyl)disulfide which yielded [M+H]+ ions only with increased fixed ionization or ion cooling times. Analysis of triethylamine-d15 provided evidence that [M+H]+ production was likely due to self-CI. Analysis of a degraded VX sample where lengthened ion storage and feedback-controlled ionization time were used resulted in detection of [M+H]+ ions for VX and several relevant degradation products. Dimer ions were also observed for two phosphonate compounds detected in this sample.  相似文献   

14.
A liquid chromatography/mass spectrometry (LC/MS) method for the determination of carbonyl compounds based on derivatization with N-methyl-4-hydrazino-7-nitrobenzofurazan (MNBDH) has been developed. Atmospheric pressure chemical ionization (APCI) in the positive mode proved the most versatile ionization technique for MNBD-hydrazones. APCI/MS spectra were recorded and the detection limits were determined for [M+H]+. 13C2 acetaldehyde MNBD-hydrazone has been synthesized and characterized. It is applied as internal standard for the quantification of acetaldehyde. Tobacco smoke has been investigated concerning its carbonyl content. Acetaldehyde was identified as main product and quantified by LC/MS using internal standardization. The result is in good agreement to quantification data obtained with UV/vis detection.  相似文献   

15.
This paper compares two liquid introduction atmospheric pressure ionization techniques for the analysis of alkyl ethoxysulfate (AES) anionic surfactant mixtures by mass spectrometry, i. e., electrospray ionization (ESI) in both positive and negative ion modes and atmospheric pressure chemical ionization (APCI) in positive ion mode, using a triple quadrupole mass spectrometer. Two ions are observed in ESI(+) for each individual AES component, [M + Na]+ and a “desulfated” ion [M − SO3 + H]+, whereas only one ion, [M − Na] is observed for each AES component in ESI(−). APCI(+) produces a protonated, “desulfated” ion of the form [M − NaSO3 + 2H]+ for each AES species in the mixture under low cone voltage (10 V) conditions. The mass spectral ion intensities of the individual AES components in either the series from ESI(+) or APCI(+) can be used to obtain an estimate of their relative concentrations in the mixture and of the average ethoxylate (EO) number of the sample. The precursor ions produced by either ESI(+) or ESI(−), when subjected to low-energy (50 eV) collision-induced dissociation, do not fragment to give ions that provide much structural information. The protonated, desulfated ions produced by APCI(+) form fragment ions which reveal structural information about the precursor ions, including alkyl chain length and EO number, under similar conditions. APCI(+) is less susceptible to matrix effects for quantitative work than ESI(+). Thus APCI(+) provides an additional tool for the analysis of anionic surfactants such as AES, especially in complex mixtures where tandem mass spectrometry is required for the identification of the individual components.  相似文献   

16.
Analysis of the isobutane chemical ionization mass spectra of hexenols, cyclohexenols and various syn/anti pairs of bicyclic and tricyclic homoallylic alcohols shows that: (i) the spectra of the allylic alcohols are dominated by [M + H – H2O]+ and [M + C4H9–H2O]+ ions and contain traces of [M + H]+ ions; (ii) [M + H]+ ions are prominent in the spectra of acyclic and certain cyclic homoallylic alcohols; and (iii) [M + H]+ ions dominate the spectra of other acyclic unsaturated alcohols. The [M + H]+ ions may result from either: (a) protonation of the hydroxyl group, followed by a very rapid intramolecular proton transfer from the protonated hydroxyl group to the carbon–carbon double bond or internal solvation of the protonated hydroxyl group by the carbon–carbon double bond; and/or (b) direct protonation of the carbon–carbon double bond with significant internal solvation of the resulting carbocation by the hydroxyl group, which may lead to carbon–oxygen bond formation to give a protonated cyclic ether. The consequences of placing various geometric constraints on the possible intramolecular interactions between the hydroxyl group and the carbon–carbon double bond in unsaturated alcohols are explored.  相似文献   

17.
Diaminodithiol (N2S2)‐type compounds readily oxidize to produce disulfides. We found that some ligands failed to produce a prospective protonated molecular ion peak but gave a peak of [M–2+H]+, whereas others produced both [M+H]+ and [M–2+H]+ peaks in electrospray ionization mass spectra. In this study, an important N2S2 ligand, the ethyl cysteinate dimer (ECD), was investigated with high‐resolution accurate mass measurements and tandem mass spectrometric analysis. The elemental compositions of ECD and its oxidized product were analyzed. The oxidation of ECD was confirmed. An ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method in multiple reaction monitoring mode was developed, and ECD and its oxidized product were quantitated in solution. The dynamic oxidation process of ECD in solution was studied in detail. The full time course of the decrease in ECD and the increase in its oxide was observed; the oxidation procedure followed first‐order kinetics, and the half‐life time of ECD was 51 min. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The 70 e V-electron impact mass spectra of the C7–C10 n-alkynes have been determined as well as the metastable ion spectra of the molecular ions and the [CS2]+ and [N2O]+ charge exchange mass spectra of the C7-C9 n-alkynes. The metastable ion mass spectra provide only a limited opportunity to distinguish between isomers; however, the 70-eV EI mass spectra of isomeric compounds permit a ready distinction between isomers. The [CS2]+ charge exchange mass spectra of isomeric compounds also show substantial differences. The [N2O]+ charge exchange mass spectra do not show the enhancement of β-fission fragments observed in field ionization experiments, despite representing ions of similar internal energy, and it is concluded that field dissociation is responsible for the β-fission fragments in the field ionization experiments.  相似文献   

19.
Secondary and tertiary amines have been reported to form [M–H]+ that correspond to dehydrogenation in matrix‐assisted laser desorption ionization time of flight mass spectrometry (MALDI‐TOF MS). In this investigation, we studied the dehydrogenation of amines in MALDI‐TOF MS by isotopic labeling. Aliphatic amines were labeled with deuterium on the methylene of an N‐benzyl group, which resulted in the formation of [M–D]+ and [M–H]+ ions by dedeuteration and dehydrogenation, respectively. This method revealed the proton that was removed. The spectra of most tertiary amines with an N‐benzyl group showed high‐intensity [M–D]+ and [M–H]+ ion peaks, whereas those of secondary amines showed low‐intensity ion peaks. Ratios between the peak intensities of [M–D]+ and [M–H]+ greater than 1 suggested chemoselective dehydrogenation at the N‐benzyl groups. The presence of an electron donor group on the N‐benzyl groups enhanced the selectivity. The dehalogenation of amines with an N‐(4‐halobenzyl) group was also observed alongside dehydrogenation. The amino ions from dehalogenation can undergo second dehydrogenation. These results provide the first direct evidence about the position at which dehydrogenation of an amine occurs and the first example of dehalogenation of haloaromatic compounds in MALDI‐TOF MS. These results should be helpful in the structural identification and elucidation of synthetic and natural molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The analytical capabilities associated with the use of silylation reactions have been extended to a new class of organic molecules, nitroaromatic compounds (NACs). These compounds are a possible contributor to urban particulate matter of secondary origin which would make them important analytes due to their (1) detrimental health effects, (2) potential to affect aerosol optical properties, and (3) and usefulness for identifying PM2.5 from biomass burning. The technique is based on derivatization of the parent NACs by using N,O‐bis‐(trimethylsilyl)‐trifluoro acetamide, one of the most prevalent derivatization reagent for analyzing hydroxylated molecules, followed by gas chromatography‐mass spectrometry using electron ionization (EI) and methane chemical ionization (CI). This method is evaluated for 32 NACs including nitrophenols, methyl‐/methoxy‐nitrophenols, nitrobenzoic acids, and nitrobenzyl alcohols. Electron ionization spectra were characterized by a high abundance of ions corresponding to [M+] or [M+ − 15]. Chemical ionization spectra exhibited high abundance for [M+ + 1], [M+ − 15], and [M+ + 29] ions. Both EI and CI spectra exhibit ions specific to nitro group(s) for [M+ − 31], [M+ − 45], and [M+ − 60]. The strong abundance observed for [M+] (EI), [M+ − 15] (EI/CI), or [M+ + 1] (CI) ions is consistent with the high charge stabilizing ability associated with aromatic compounds. The combination of EI and CI ionization offers strong capabilities for detection and identification of NACs. Spectra associated with NACs, containing hydrogen, carbon, oxygen, and nitrogen atoms only, as silylated derivatives show fragment/adduct ions at either (a) odd or (b) even masses that indicate either (a) odd or (b) even number of nitro groups, respectively. Mass spectra associated with silylated NACs exhibited 3 distinct regions where characteristic fragmentation with a specific pattern associated with (1) ─OH and/or ─COOH groups, (2) ─NO2 group(s), and (3) benzene ring(s). These findings were confirmed with applications to chamber aerosol and ambient PM2.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号