首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学》2017,35(10):1575-1585
Binder‐free, nano‐sized needlelike MnO2 ‐submillimeter‐sized reduced graphene oxide (nMnO2‐srGO ) hybrid films with abundant porous structures were fabricated through electrophoretic deposition and subsequent thermal annealing at 500 °C for 2 h. The as‐prepared hybrid films exhibit a unique hierarchical morphology, in which nMnO2 with a diameter of 20—50 nm and a length of 300—500 nm is randomly anchored on both sides of srGO . When evaluated as binder‐free anodes for lithium‐ion half‐cell, the nMnO2‐srGO composites with a content of 76.9 wt% MnO2 deliver a high capacity of approximately 1652.2 mA •h•g−1 at a current density of 0.1 A•g−1 after 200 cycles. The high capacity remains at 616.8 mA •h•g−1 (ca. 65.1% capacity retention) at a current density as high as 4 A•g−1. The excellent electrochemical performance indicates that the nMnO2‐srGO hybrid films could be a promising anode material for lithium ion batteries (LIBs ).  相似文献   

2.
Lithium-sulfur batteries are promising secondary energy storage devices that are mainly limited by its unsatisfactory cyclability owing to inefficient reversible conversion of sulfur and lithium sulfide on the cathode during the discharge/charging process. In this study, nitrogen-doped three-dimensional porous carbon material loaded with CoSe2 nanoparticles (CoSe2-PNC) is developed as a cathode for lithium-sulfur battery. A combination of CoSe2 and nitrogen-doped porous carbon can efficiently improve the cathode activity and its conductivity, resulting in enhanced redox kinetics of the charge/discharge process. The obtained electrode exhibits a high discharge specific capacity of 1139.6 mAh g−1 at a current density of 0.2 C. After 100 cycles, its capacity remained at 865.7 mAh g−1 thus corresponding to a capacity retention of 75.97 %. In a long-term cycling test, discharge specific capacity of 546.7 mAh g−1 was observed after 300 cycles performed at a current density of 1 C.  相似文献   

3.
Sodium/potassium-ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large-size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP-C-2 composite represents exceedingly impressive electrochemical performance for both sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long-term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2-based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP-C-2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs.  相似文献   

4.
Organic carbonyl electrode materials are widely employed for alkali metal-ion secondary batteries in terms of their sustainability, structure designability and abundant resources. As a typical redox-active organic electrode materials, pyrene-4, 5, 9, 10-tetraone (PT) shows high theoretical capacity due to the rich carbonyl active sites. But its electrochemical behavior in secondary batteries still needs further exploration. Herein, PT-based linear polymers (PPTS) is synthesized with thioether bond as bridging group and then employed as an anode material for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). As expected, PPTS shows improved conductivity and insolubility in the non-aqueous electrolyte. When used as an anode material for LIBs, PPTS delivers a high reversible specific capacity of 697.1 mAh g−1 at 0.1 A g−1 and good rate performance (335.4 mAh g−1 at 1 A g−1). Moreover, a reversible specific capacity of 205.2 mAh g−1 at 0.05 A g−1 could be obtained as an anode material for SIBs.  相似文献   

5.
Selenium (Se) is an element in the same main group as sulfur and is characterized by high electrical conductivity and large capacity (675 mAh g−1). Herein, a novel ultra-high dispersion amorphous selenium graphene composite (a-Se/rGO) was synthesized and a selenium nanorods graphene composite (b-Se/rGO) was prepared by hydrothermal method as the cathode material for all solid-state lithium−selenium (Li−Se) batteries, hoping to improve the efficiency and utilization rate of active substances in all solid-state batteries. The all-solid-state batteries were assembled using a heated thawing electrolyte (2LiIHPN−LiI; HPN=3-hydroxypropionitrile). The utilization rate of a-Se/rGO was 103 % and the capacity was 697 mAh g−1, which remained at 281 mAh g−1 (41.6 % of the 675 mAh g−1) after 30 cycles under 0.5 C. Notably, a-Se/rGO showed excellent performance concerning its utilization rate, with a capacity of up to 610 mAh g−1 at 2 C, due to the high availability of amorphous Se and the special properties of the electrolytes. However, in the charge and discharge cycles, the second discharge capacity of a-Se/rGO was more significantly attenuated than that of the first discharge due to the formation of larger crystals of selenium during the charging process. The battery assembled using b-Se/rGO maintained a capacity of 270.58 mAh g−1 after 30 cycles (the retention rate of discharge capacity was 66.13 % compared with that in the first cycle). Through TEM and other relevant tests, it is speculated that amorphous selenium is conducive to capacity release, which, however, is affected by the formation of crystalline selenium after the first charge process.  相似文献   

6.
Organic electrode materials have attracted more and more attention for sodium-ion batteries (SIBs) that are regarded as one of the most promising alternatives of lithium-ion batteries, because they can endure the storage of large sodium ions (with a larger radius than that of lithium ions) without obvious volume change. Herein, we report a novel conjugated porous polymer (TPIP) based on triazine and imide as cathodes material for SIBs. TPIP has abundant redox-active sites, good thermal stability (400°C) and large specific surface area (306 m2 g−1). As a result, TPIP electrode delivered a specific capacity of 120 mAh g−1 after 50 cycles at a current density of 0.1 A g−1 and 85 mAh g−1 after 150 cycles at a current density of 1.0 A g−1. Ex-situ X-ray photoelectron spectra and Fourier transform infrared spectra showed that the TPIP electrodes reversibly stored three sodium ions per unit through the triazine rings and half of the carbonyl groups. These results deepen our understanding of charge storage mechanisms of polymers with triazine and imide units and will provide guidance for the future design of electrode materials for high-performance SIBs.  相似文献   

7.
Here, flower-like manganese oxide with enriched oxygen vacancies were reported for high performance supercapacitors. The moderate oxygen-vacancy were achieved by controlling annealing atmosphere. Benefiting from improving the conductivity and the density of active sites, MnOx−Ar sample as an electrode material has remarkable specific capacity (339 mAh g−1 at 0.5 A g−1), extraordinary rate capability (90 % capacity retention at 1 A g−1), and good cycling property (90 % capacity retention at 1 A g−1 after 5000 cycles). Additionally, the asymmetric supercapacitor (ASC) was assembled which used the MnOx−Ar sample as cathode and Kochen Black (KB) as anode, which displayed a remarkable energy density (16 Wh kg−1) at a large power density (7593 W kg−1). These results, on the one hand, further expand the application of MnO2-based materials, and on the other hand, offer a new perspective for the oxygen non-stoichiometry in material electrochemistry.  相似文献   

8.
The high theoretical specific capacity, strong structural designability and relatively inexpensive manufacturing cost make the exploration of organic electrode materials more attractive in recent years. In this article, owing to the large π-conjugated structure, plenty of nitrogen heteroatoms and multiring aromatic system, polyazaacene analogue poly(1,6-dihydropyrazino[2,3 g]quinoxaline-2,3,8-triyl-7-(2H)-ylidene-7,8-dimethylidene) (PQL) was applied as the anode in sodium-ion batteries (SIBs). PQL was almost insoluble in conventional liquid organic electrolyte (1 M NaClO4 in ethylene carbonate (EC)/dimethyl carbonate (DMC) (v:v=1 : 1) with 5 % fluoroethylene carbonate (FEC)), which strongly improved its cycle stability. The initial discharge capacity was obtained to be 1825 mAh g−1 at the current density of 100 mA g−1 and stabilized at 317 mAh g−1 after 400 cycles with the coulombic efficiency as high as 97 %. It not only showed good rate capability at high current densities (202, 183 mAh g−1 at 1 A g−1 and 1.5 A g−1) but also had a superior energy density around 290 Wh kg−1.  相似文献   

9.
The demand for large‐scale and safe energy storage is increasing rapidly due to the strong push for smartphones and electric vehicles. As a result, Li+/Mg2+ hybrid‐ion batteries (LMIBs) combining a dendrite‐free deposition of Mg anode and Li+ intercalation cathode have attracted considerable attention. Here, a LMIB with hydrothermal‐prepared MoS2 nano flowers as cathode material was prepared. The battery showed remarkable electrochemical properties with a large discharge capacity (243 mAh g?1 at the 0.1 C rate), excellent rate capability (108 mAh g?1 at the 5 C rate), and long cycle life (87.2 % capacity retention after 2300 cycles). Electrochemical analysis showed that the reactions occurring in the battery cell involved Mg stripping/plating at the anode side and Li+ intercalation at the cathode side with a small contribution from Mg2+ adsorption. The excellent electrochemical performance and extremely safe cell system show promise for its use in practical applications.  相似文献   

10.
Hydronium-ion batteries have received significant attention owing to the merits of extraordinary sustainability and excellent rate abilities. However, achieving high-performance hydronium-ion batteries remains a challenge due to the inferior properties of anode materials in strong acid electrolyte. Herein, a hydronium-ion battery is constructed which is based on a diquinoxalino [2,3-a:2’,3’-c] phenazine (HATN) anode and a MnO2@graphite felt cathode in a hybrid acidic electrolyte. The fast kinetics of hydronium-ion insertion/extraction into HATN electrode endows the HATN//MnO2@GF battery with enhanced electrochemical performance. This battery exhibits an excellent rate performance (266 mAh g−1 at 0.5 A g−1, 97 mAh g−1 at 50 A g−1), attractive energy density (182.1 Wh kg−1) and power density (31.2 kW kg−1), along with long-term cycle stability. These results shed light on the development of advanced hydronium-ion batteries.  相似文献   

11.
Layered metal oxides have attracted increasing attention as cathode materials for sodium-ion batteries (SIBs). However, the application of such cathode materials is still hindered by their poor rate capability and cycling stability. Here, a facile self-templated strategy is developed to synthesize uniform P2-Na0.7CoO2 microspheres. Due to the unique microsphere structure, the contact area of the active material with electrolyte is minimized. As expected, the P2-Na0.7CoO2 microspheres exhibit enhanced electrochemical performance for sodium storage in terms of high reversible capacity (125 mAh g−1 at 5 mA g−1), superior rate capability and long cycle life (86 % capacity retention over 300 cycles). Importantly, the synthesis method can be easily extended to synthesize other layered metal oxide (P2-Na0.7MnO2 and O3-NaFeO2) microspheres.  相似文献   

12.
Although sodium‐ion batteries (SIBs) are considered as alternatives to lithium‐ion batteries (LIBs), the electrochemical performances, in particular the energy density, are much lower than LIBs. A metal–organic compound, cuprous 7,7,8,8‐tetracyanoquinodimethane (CuTCNQ), is presented as a new kind of cathode material for SIBs. It consists of both cationic (CuII↔CuI) and anionic (TCNQ0↔TCNQ↔ TCNQ2−) reversible redox reactions, delivering a discharge capacity as high as 255 mAh g−1 at a current density of 20 mA g−1. The synergistic effect of both redox‐active metal cations and organic anions brings an electrochemical transfer of multiple electrons. The transformation of cupric ions to cuprous ions occurs at near 3.80 V vs. Na+/Na, while the full reduction of TCNQ0 to TCNQ happens at 3.00–3.30 V. The remarkably high voltage is attributed to the strong inductive effect of the four cyano groups.  相似文献   

13.
Binary transition-metal oxides (BTMOs) with hierarchical micro–nano-structures have attracted great interest as potential anode materials for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical cauliflower-like CoFe2O4 (cl-CoFe2O4) via a facile room-temperature co-precipitation method followed by post-synthetic annealing. The obtained cauliflower structure is constructed by the assembly of microrods, which themselves are composed of small nanoparticles. Such hierarchical micro–nano-structure can promote fast ion transport and stable electrode–electrolyte interfaces. As a result, the cl-CoFe2O4 can deliver a high specific capacity (1019.9 mAh g−1 at 0.1 A g−1), excellent rate capability (626.0 mAh g−1 at 5 A g−1), and good cyclability (675.4 mAh g−1 at 4 A g−1 for over 400 cycles) as an anode material for LIBs. Even at low temperatures of 0 °C and −25 °C, the cl-CoFe2O4 anode can deliver high capacities of 907.5 and 664.5 mAh g−1 at 100 mA g−1, respectively, indicating its wide operating temperature. More importantly, the full-cell assembled with a commercial LiFePO4 cathode exhibits a high rate performance (214.2 mAh g−1 at 5000 mA g−1) and an impressive cycling performance (612.7 mAh g−1 over 140 cycles at 300 mA g−1) in the voltage range of 0.5–3.6 V. Kinetic analysis reveals that the electrochemical performance of cl-CoFe2O4 is dominated by pseudocapacitive behavior, leading to fast Li+ insertion/extraction and good cycling life.  相似文献   

14.
Carbon-coated monoclinic Li3V2(PO4)3 (LVP/C) cathode material has been successfully prepared by a novel glycine-assisted sol–gel method. The product is investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM) and electrochemical method. In the range of 3.0–4.3 V, the LVP/C electrode presents excellent rate capability. It is 125.4 mAh g− 1 that can be delivered at 1 C charge–discharge rate and 99.5 mAh g− 1 is still obtained at 20 C charge–discharge rate. These results demonstrate that the carbon-coated LVP/C composite material prepared via a glycine-assisted sol–gel method has great potential for use in high-power lithium ion batteries.  相似文献   

15.
Lithium‐rich layered oxides are promising cathode materials for lithium‐ion batteries and exhibit a high reversible capacity exceeding 250 mAh g−1. However, voltage fade is the major problem that needs to be overcome before they can find practical applications. Here, Li1.2Mn0.54Ni0.13Co0.13O2 (LLMO) oxides are subjected to nanoscale LiFePO4 (LFP) surface modification. The resulting materials combine the advantages of both bulk doping and surface coating as the LLMO crystal structure is stabilized through cationic doping, and the LLMO cathode materials are protected from corrosion induced by organic electrolytes. An LLMO cathode modified with 5 wt % LFP (LLMO–LFP5) demonstrated suppressed voltage fade and a discharge capacity of 282.8 mAh g−1 at 0.1 C with a capacity retention of 98.1 % after 120 cycles. Moreover, the nanoscale LFP layers incorporated into the LLMO surfaces can effectively maintain the lithium‐ion and charge transport channels, and the LLMO–LFP5 cathode demonstrated an excellent rate capacity.  相似文献   

16.
Although, in the carbon family, graphite is the most thermodynamically stable allotrope, conversion of other carbon allotropes, even amorphous carbons, into graphite is extremely hard. We report a simple electrochemical route for the graphitization of amorphous carbons through cathodic polarization in molten CaCl2 at temperatures of about 1100 K, which generates porous graphite comprising petaloid nanoflakes. This nanostructured graphite allows fast and reversible intercalation/deintercalation of anions, promising a superior cathode material for batteries. In a Pyr14TFSI ionic liquid, it exhibits a specific discharge capacity of 65 and 116 mAh g−1 at a rate of 1800 mA g−1 when charged to 5.0 and 5.25 V vs. Li/Li+, respectively. The capacity remains fairly stable during cycling and decreases by only about 8 % when the charge/discharge rate is increased to 10000 mA g−1 during cycling between 2.25 and 5.0 V.  相似文献   

17.
A superior Na3V2(PO4)3‐based nanocomposite (NVP/C/rGO) has been successfully developed by a facile carbothermal reduction method using one most‐common chelator, disodium ethylenediamintetraacetate [Na2(C10H16N2O8)], as both sodium and nitrogen‐doped carbon sources for the first time. 2D‐reduced graphene oxide (rGO) nanosheets are also employed as highly conductive additives to facilitate the electrical conductivity and limit the growth of NVP nanoparticles. When used as the cathode material for sodium‐ion batteries, the NVP/C/rGO nanocomposite exhibits the highest discharge capacity, the best high‐rate capabilities and prolonged cycling life compared to the pristine NVP and single‐carbon‐modified NVP/C. Specifically, the 0.1 C discharge capacity delivered by the NVP/C/rGO is 116.8 mAh g?1, which is obviously higher than 106 and 112.3 mAh g?1 for the NVP/C and pristine NVP respectively; it can still deliver a specific capacity of about 80 mAh g?1 even at a high rate up to 30 C; and its capacity decay is as low as 0.0355 % per cycle when cycled at 0.2 C. Furthermore, the electrochemical impedance spectroscopy was also implemented to compare the electrode kinetics of all three NVP‐based cathodes including the apparent Na diffusion coefficients and charge‐transfer resistances.  相似文献   

18.
The synthesis of morphology-controlled carbon-coated nanostructured LiFePO4 (LFP/Carbon) cathode materials by surfactant-assisted hydrothermal method using block copolymers is reported. The resulting nanocrystalline high surface area materials were coated with carbon and designated as LFP/C123 and LFP/C311. All the materials were systematically characterized by various analytical, spectroscopic and imaging techniques. The reverse structure of the surfactant Pluronic® 31R1 (PPO-PEO-PPO) in comparison to Pluronic® P123 (PEO-PPO-PEO) played a vital role in controlling the particle size and morphology which in turn ameliorate the electrochemical performance in terms of reversible specific capacity (163 mAh g−1 and 140 mAh g−1 at 0.1 C for LFP/C311 and LFP/C123, respectively). In addition, LFP/C311 demonstrated excellent electrochemical performance including lower charge transfer resistance (146.3 Ω) and excellent cycling stability (95 % capacity retention at 1 C after 100 cycles) and high rate capability (163.2 mAh g−1 at 0.1 C; 147.1 mAh g−1 at 1 C). The better performance of the former is attributed to LFP nanoparticles (<50 nm) with a specific spindle-shaped morphology. Further, we have also evaluated the electrode performance with the use of both PVDF and CMC binders employed for the electrode fabrication.  相似文献   

19.
Xinyi Zhao  Dr. Fei Xu 《Chemphyschem》2023,24(16):e202300333
Rechargeable magnesium batteries (RMBs) attract research interest owing to the low cost and high reliability, but the design of cathode materials is the major difficulty of their development. The bivalent magnesium cation suffers from a strong interaction with the anion and is difficult to intercalate into traditional magnesium intercalation cathodes. Herein, an amorphous molybdenum polysulfide (a-MoSx) is synthesized via a simple one-step solvothermal reaction and used as the cathode material for RMBs. The a-MoSx cathode provides a high capacity (185 mAh g−1) and a good rate performance (50 mAh g−1 at 1000 mA g−1), which are much superior compared with crystalline MoS2 and demonstrate the privilege of amorphous RMB cathodes. A mechanism study demonstrates both of molybdenum and sulfur undergo redox reactions and contribute to the capacity. Further optimizations indicate low-temperature synthesis would favor the magnesium storage performance of a-MoSx.  相似文献   

20.
Sodium‐ion batteries (SIBs) based on flexible electrode materials are being investigated recently for improving sluggish kinetics and developing energy density. Transition metal selenides present excellent conductivity and high capacity; nevertheless, their low conductivity and serious volume expansion raise challenging issues of inferior lifespan and capacity fading. Herein, an in‐situ construction method through carbonization and selenide synergistic effect is skillfully designed to synthesize a flexible electrode of bone‐like CoSe2 nano‐thorn coated on porous carbon cloth. The designed flexible CoSe2 electrode with stable structural feature displays enhanced Na‐ion storage capabilities with good rate performance and outstanding cycling stability. As expected, the designed SIBs with flexible BL?CoSe2/PCC electrode display excellent reversible capacity with 360.7 mAh g?1 after 180 cycles at a current density of 0.1 A g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号