首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
A sensitive approach of capillary electrophoresis coupled with field‐amplified sample injection and transient isotachophoresis was developed for the simultaneous determination of two β‐blockers: sotalol and metoprolol. In this dual focusing technique, the samples were prepared via only dissolution in ultrapure water and then injected electrokinetically. Phosphate acted as both the background electrolyte and the leading electrolyte. Its optimized concentration was 80 mM. A total of 25 mM of glycine was used as the terminating electrolyte. Under optimum conditions, good separation of sotalol and metoprolol was achieved within 10 min. In comparison with the conventional method, the sensitivity enhancement factors were up to 1031 and 919 for sotalol and metoprolol, respectively. The proposed method was employed in the determination of sotalol and metoprolol in spiked human urine samples. The limits of detection and limits of quantitation obtained via ultraviolet detection were 5 and 12 ng/mL, respectively, for sotalol, and 10 and 25 ng/mL, respectively, for metoprolol. The intraday repeatability values were lower than 2.7 and 1.7% for peak area and migration time, respectively. The assay is a simple and efficient strategy with potential for application in clinical and biochemical laboratories for monitoring sotalol and metoprolol.  相似文献   

2.
    
Zinellu A  Sotgia S  Deiana L  Carru C 《Electrophoresis》2011,32(14):1893-1897
Malondialdehyde (MDA) determination is the most widely used method for monitoring lipid peroxidation. Here, we describe an easy field-amplified sample injection (FASI) CE method with UV detection for the detection of free plasma MDA. MDA was detected within 8 min by using 200 mmol/L Tris phosphate pH 5.0 as running buffer. Plasma samples treated with ACN for protein elimination were directly injected on capillary without complex cleanup and/or sample derivatization procedures. Using electrokinetic injection, the detection limit in real sample was 3 nmol/L, thus improving of about 100-fold the LOD of the previous described methods based on CE. Precision tests indicate a good repeatability of our method both for migration times (CV = 1.11%) and for areas (CV = 2.05%). Moreover, a good reproducibility of intra- and inter-assay tests was obtained (CV = 2.55% and CV = 5.14%, respectively). Suitability of the method was tested by measuring MDA levels in 44 healthy volunteers.  相似文献   

3.
A capillary zone electrophoresis (CZE) method with ultraviolet-visible detection has been established and validated for the determination of five phenothiazines: thiazinamium methylsulfate, promazine hydrochloride, chlorpromazine hydrochloride, thioridazine hydrochloride, and promethazine hydrochloride in human urine. Optimum separation was obtained on a 64.5 cm x 75 microm bubble cell capillary using a buffer containing 150 mM tris(hydroxymethyl)aminomethane and 25% acetonitrile at pH 8.2, with temperature and voltage of 25 degrees C and 20 kV, respectively. Naphazoline hydrochloride was used as an internal standard. Field-amplified sample injection (FASI) has been applied to improve the sensitivity of the detection. Considering the influence of parameters affecting the on-line preconcentration (nature of preinjection plug, sample solvent composition, injection times, and injection voltage) and due to the significant interactions among them, in this paper we propose for the first time the application of a multivariate approach to carry out the study. The optimized conditions were as follows: preinjection plug of water for 7 s at 50 mbar, electrokinetic injection for 40 s at 6.2 kV, and 32 microm of H3PO4 in the sample solvent. Also, a solid-phase extraction (SPE) procedure is developed to obtain low detection limits and an adequate selectivity for urine samples. The combination of SPE and FASI-CZE-UV allows adequate linearities and recoveries, low detection limits (from 2 to 5 ng/mL), and satisfactory precisions (3.0-7.2% for an intermediate RSD %).  相似文献   

4.
    
In this work voltammetric techniques were explored for quantification of α‐Lipoic acid (ALA) using a pyrolytic graphite electrode modified with cobalt phthalocyanine. Cyclic voltammograms recorded in phosphate buffer solution containing 1×10?3 mol L?1 of ALA presented an oxidation peak located at +0.8 V vs. SCE. The modification of the electrode produced a 100 mV shift of the onset oxidation potential to less positive value and a substantial increase in the ALA oxidation current. Among the voltammetric techniques explored, differential pulse voltammetry showed the best performance for quantifications of the analyte in low concentrations. Limits of detection and quantification of ALA obtained corresponds to 3.4×10?9 mol L?1 and 1.2×10?8 mol L?1, respectively.  相似文献   

5.
    
R Knob  V Maier  J Petr  V Ranc  J Sevčík 《Electrophoresis》2012,33(14):2159-2166
Separation of major environmental pollutants as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by capillary electrophoresis is reported for the first time. It is not possible to resolve the solutes in an aqueous media. However, the use of methanol and acetonitrile as the background electrolyte (BGE) solvents allowed their rapid separation in an uncoated capillary. A major effort was put into BGE optimization in respect to both separation efficiency and detection for further on‐line preconcentration. 5 mmol.L?1 naphthalene‐1‐sulfonic acid and 10 mmol.L?1 triethylamine dissolved in ACN/MeOH (50:50 v/v) provided best separation and detection conditions. Next, the large‐volume sample stacking and the field‐amplified sample injection were applied and compared. Large‐volume sample stacking improved limits of detection (LODs) with regard to the standard injection by 69 times for PFOA and 143 times for PFOS with LODs of 280 and 230 nmol.L?1, respectively. Field‐amplified sample injection improved LODs 624 times for PFOAand 806 times for PFOS with LODs 31 and 40 nmol.L?1, respectively. Both preconcentration methods showed repeatabilities of migration times less than 1.2% RSD intraday and 6.6% RSD interday. The method was applied on PFOA and PFOS analysis in a sample of river water treated with solid‐phase extraction, which further improved LOD toward 5.6 × 10?10 mol.L?1 for PFOS and 6.4 × 10?10 mol.L?1 for PFOA and allows the method to be used for river water contamination screening or decomposition studies.  相似文献   

6.
    
We developed a novel hybrid sample injection mode (HSIM) that presents the combination of electrokinetic injection and vacuum injection to enhance detection sensitivity in CZE. Samples were introduced using both vacuum and electrokinetic injections simultaneously, with a water plug injected into the capillary prior to sample introduction (i.e. similarly to field-amplified sample injection, FASI). Using a sample mixture containing an anti-fouling agent applied to ship hulls, pyridine-triphenylborane and its degradation products (diphenylborinic acid, phenylboronic acid, and phenol) dissolved in ACN, the length of water plug, time, and voltage for sample introduction were optimized. The signal intensity (peak height) was found to be up to a 30-fold increased using HSIM by applying 4 kV for 4 s at the inlet end of the capillary as the cathode with supplementary vacuum in comparison with only vacuum injection for 4 s. The LODs (at a S/N of 3) for pyridine-triphenylborane, diphenylborinic acid, phenylboronic acid, and phenol were 0.88, 1.0, 21, and 23 μg/L, respectively. At the level of 0.04 mg/L, the RSDs (n=4, intra-day) for the above analytes were in the ranges of 1.9-11, 4.3-9.2, and 0.34-0.66% for peak area, peak height, and migration time, respectively. The HSIM is a simple and promising procedure useful for enhancing the sensitivity for both low-and high-mobility ions in CZE.  相似文献   

7.
Fast, selective, and sensitive analysis of inorganic anions is compulsory for the identification of explosives in post-blast or environmental samples. For the last twenty years, capillary electrophoresis (CE) has become a valuable alternative to ion chromatography (IC) for the analysis of inorganic-based explosives because of its low running costs and its simplicity of use. This article focuses on the development and validation of a CE method for the simultaneous analysis of 10 anions (chloride, nitrite, nitrate, thiosulphate, perchlorate, chlorate, thiocyanate, carbonate, sulphate, and phosphate) which can be found in post-blast residues, plus for the first time azide anion, possibly present in the composition of detonators, and the internal standard (formate) in 20 min total runtime. Intermediate precisions were 2.11% for normalized areas and 0.72% for normalized migration times. Limits of detection close to 0.5 ppm for all anions were obtained with the use of preconcentration techniques, thanks to a fast and simple sample preparation allowing the analysis of a large variety of matrices with the developed generic CE method. The matrix effects were statistically studied for the first time in the explosive field for different matrices, containing interfering anions and cations, sometimes at high levels. In fact, no significant matrix effect occurred (tests with blank matrix extracts of soil, cloth, glass, plastic, paper, cotton, and metal). Finally, analyses of real post-blast residues and real detonator extracts were performed. The CE results were compared with those obtained with the IC method used routinely and showed excellent correlation.  相似文献   

8.
The previously described chiral 2‐acyloxathianes 5 (Scheme I) are used in two different enantioselective syntheses of γ‐butyrolactones. In one synthesis, Grignard addition, cleavage and reduction to carbinols RR'C(OH)CH2OH is followed by tosylation, malonate homologation, lactonization, and removal of the carbomethoxy group to give optically active γ‐lactones. A modification of this synthesis (Scheme I) leads to optically active α‐methylene‐γ‐lactones. In the second synthesis, reaction of a bromomagnesium enolate with ketones 5 leads to β‐hydroxyesters, which, by appropriate sequences of reduction and cleavage (Scheme II) are converted to optically active α‐ or β‐hydroxy‐γ‐lactones.  相似文献   

9.
    
α‐Methyl glutamic acid (L ‐L )‐, (L ‐D )‐, (D ‐L )‐, and (D ‐D )‐γ‐dimers were synthesized from L ‐ and D ‐glutamic acids, and the obtained dimers were subjected to polycondensation with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and 1‐hydroxybenzotriazole hydrate as condensation reagents. Poly‐γ‐glutamic acid (γ‐PGA) methyl ester with the number‐average molecular weights of 5000∼20,000 were obtained by polycondensation in N,N‐dimethylformamide in 44∼91% yields. The polycondensation of (L ‐L )‐ and (D ‐D )‐dimers afforded the polymers with much larger |[α]D | compared with the corresponding dimers. The polymer could be transformed into γ‐PGA by alkaline hydrolysis or transesterification into α‐benzyl ester followed by hydrogenation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 732–741, 2001  相似文献   

10.
Semihydrogenation of α,β‐unsaturated ynoates and ‐ynones bearing a γ‐alkoxy group can be performed using triphenylphosphine and water. α,β‐Unsaturated ynoates were reduced to a mixture of cis and trans α,β‐unsaturated enoates, whereas, ynones were reduced to trans α,β‐unsaturated enones as the only products.  相似文献   

11.
    
The amount of research activity concerning α‐methylene‐γ‐butyrolactones and α‐alkylidene‐γ‐butyrolactones has increased dramatically in recent years. This Review summarizes the structural types, biological activities, and biosynthesis of these compounds, concentrating on publications from the past 10 years. Traditional approaches to α‐methylene‐γ‐butyrolactones and α‐alkylidene‐γ‐butyrolactones are then reviewed together with novel approaches, including those from our own research group, reported more recently.  相似文献   

12.
    
A sensitive method of CZE‐ultraviolet (UV) detection based on the on‐line preconcentration strategy of field‐amplified sample injection (FASI) was developed for the simultaneous determination of five kinds of chlorophenols (CPs) namely 4‐chlorophenol (4‐CP), 2‐chlorophenol (2‐CP), 2,4‐dichlorophenol (2,4‐DCP), 2,4,6‐trichlorophenol (2,4,6‐TCP), and 2,6‐dichlorophenol (2,6‐DCP) in water samples. Several parameters affecting CZE and FASI conditions were systematically investigated. Under the optimal conditions, sensitivity enhancement factors for 4‐CP, 2‐CP, 2,4‐DCP, 2,4,6‐TCP, and 2,6‐DCP were 9, 27, 35, 43, and 43 folds, respectively, compared with the direct CZE, and the baseline separation was achieved within 5 min. Then, the developed FASI‐CZE‐UV method was applied to tap and lake water samples for the five CPs determination. The LODs (S/N = 3) were 0.0018–0.019 µg/mL and 0.0089–0.029 µg/mL in tap water and lake water, respectively. The values of LOQs in tap water (0.006–0.0074 µg/mL) were much lower than the maximum permissible concentrations of 2,4,6‐TCP, 2,4‐DCP, and 2‐CP in drinking water stipulated by World Health Organization (WHO) namely 0.3, 0.04, and 0.01 µg/mL, respectively, and thereby the method was suitable to detect the CPs according to WHO guidelines. Furthermore, the method attained high recoveries in the range of 83.0–119.0% at three spiking levels of five CPs in the two types of water samples, with relative standard deviations of 0.37–8.58%. The developed method was proved to be a simple, sensitive, highly automated, and efficient alternative to CPs determination in real water samples.  相似文献   

13.
The mass spectra of a series of N‐aryl α,β‐unsaturated γ‐lactams were studied. Besides the molecular ion, the three characteristic fragments such as [M+‐29], [M+‐55], and [M+‐82] were commonly found in a series of N‐Aryl α,β‐unsaturated γ‐lactams in EI/MS. Further more the mechanism for the interpretation of these fragments is also de scribed.  相似文献   

14.
    
A series of 3α‐hydroxyl‐3β‐methoxymethyl‐5α‐pregnan‐20‐ones 7 ‐ 15 possessing C‐21 hydrophilic substituents were synthesized from the corresponding C21‐bromo steroid 6 in 24%‐89% yields. The hydrophilic groups include amino group from Delépine reaction, hydroxyl group from the hydrolysis by cesium formate in anhydrous MeOH , and amino acids, hydrazinecarboxamide, piperazine, and imidazolyl from nucleophilic substitution. Acylation and O‐glycosylation of the resulting C‐21 hydroxylsteroid also afforded the corresponding acylated and glycosylated products in excellent yield (77%‐89%). Among the compounds, aminosteroid 7 and piperazinyl steroid 14 were most potent against the proliferation of human prostate cancer PC ‐3 cells with IC 50 values of 42 and 82 μmol L−1, respectively.  相似文献   

15.
    
The simultaneous determination of usually employed anesthetics (procaine, lidocaine, and bupivacaine) has been developed and validated using CE with ultraviolet detection at 212 nm. The separation of these three drugs has been achieved in less than 7 min, using a temperature of 25ºC and 25 kV, with a 150 mM citrate buffer (pH 2.5) as BGE. Field‐amplified sample injection (FASI) has been used for on‐line sample preconcentration. Ultrapure water and ACN 50/50 (v/v) mixture gave the greatest enhancement factor when it was employed as an injection solvent. Injection voltage and time were optimized, being 13 kV and 13 s, the optimum values, respectively. To avoid the possible irreproducibility associated with the electrokinetic injection, an internal standard such as tetracaine, was employed. The instrumental detection limits (LOD S/N = 3) for the compounds ranged between 2.6 and 7.0 μg L−1 and the quantitation limits (LOQ S/N = 10) between 37.8 and 55.9 μg L−1. The detection limits obtained in real human urine samples ranged between 55.2 and 83.6 μg L−1 and the quantitation limits between 196.0 and 276.0 μg L−1. The proposed method has demonstrated its applicability to the analysis of these local anesthetics in urine samples without any pretreatment, allowing the rapid determination of these target analytes.  相似文献   

16.
17.
    
To help to clarify therapeutic functions of lipoic acid (LA) in biochemical and clinical practice we have elaborated a fast, simple and accurate HPLC method enabling determination of LA in human urine. The proposed analytical approach includes reduction of LA with tris(2‐carboxyethyl)phosphine and simultaneous separation and derivatization of the analyte with butylamine and o‐phthaldialdehyde followed by spectrofluorimetric detection at λex = 340 nm and λem = 440 nm. The assay was performed using gradient elution and the mobile phase containing 0.0025 mol L?1 o‐phthaldialdehyde in 0.0025 mol L?1 NaOH and acetonitrile. Linearity of the detector response for LA was observed in the range of 0.3–8 μmol L?1. Limits of detection and quantification for LA in urine samples were 0.02 and 0.03 μmol L?1, respectively. The total analysis time, including sample work‐up, was <20 min. The analytical procedure was successfully applied to analysis of real urine samples delivered from six healthy volunteers who received a single 100 mg dose of LA.  相似文献   

18.
毛细管电泳直接分析与水不互溶溶液中痕量物质的新方法   总被引:1,自引:0,他引:1  
本文采用在线反萃取-场放大进样方法实现了毛细管电泳与溶剂微萃取的直接联用.  相似文献   

19.
The ozonolysis of 1‐substituted allyl silyl ethers or 1‐substituted allyl carboxylates followed by treatment with bases gave the corresponding α‐silyloxymethyl‐ or α‐acyloxymethyl‐ketones in good yields. It is proposed to proceed via the corresponding α‐silyloxy‐ or α‐acyloxyaldehydes intermediates followed by 1,4‐group migration. The results of theoretical calculations are applicable to explain the experimental results.  相似文献   

20.
    
The first concise synthesis of the bidesmosidic oleanolic acid saponins 1 – 3 isolated from Fadogia ancylantha (Makoni tea) have been accomplished through a ‘one‐pot sequential glycosylation’ strategy with two glycosyl 1‐(trichloroacetimidate)s as glycosyl donors. The synthesized natural products 1 – 3 were then evaluated for their inhibitory activities against α‐glucosidase, α‐amylase, and lipase. Among the assayed compounds 1 – 3 , compound 1 showed strong α‐glucosidase and α‐amylase inhibition, with IC50 values of 160 and 180 μM , respectively. Moreover, compounds 2 and 3 showed strong inhibition against α‐glucosidase and lipase, with the respective IC50 values of 170 and 190 μM , and 190 and 200 μM .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号