首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Core‐level excitations are generated by absorption of high‐energy radiation such as X‐rays. To describe these energetically high‐lying excited states theoretically, we have implemented a variant of the algebraic‐diagrammatic construction scheme of second‐order ADC(2) by applying the core‐valence separation (CVS) approximation to the ADC(2) working equations. Besides excitation energies, the CVS‐ADC(2) method also provides access to properties of core‐excited states, thereby allowing for the calculation of X‐ray absorption spectra. To demonstrate the potential of our implementation of CVS‐ADC(2), we have chosen medium‐sized molecules as examples that have either biological importance or find application in organic electronics. The calculated results of CVS‐ADC(2) are compared with standard TD‐DFT/B3LYP values and experimental data. In particular, the extended variant, CVS‐ADC(2)‐x, provides the most accurate results, and the agreement between the calculated values and experiment is remarkable. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Excited‐state intramolecular proton transfer (ESIPT) of four imidazole derivatives, 2‐(2′‐hydroxyphenyl)imidazole (HPI), 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI), 2‐(2′‐hydroxyphenyl)‐1H‐phenanthro[9,10‐d]imidazole (HPPI) and 2‐(2′‐hydroxyphenyl)‐1‐phenyl‐1H‐phenanthro[9,10‐d]imidazole (HPPPI), were studied by the sophisticated CASSCF/CASPT2 methodology. The state‐averaged SA‐CASSCF method was used to optimize their geometry structures of S0 and S1 electronic states, and the CASPT2 calculations were used for the calibration of all the single‐point energies, including the absorption and emission spectra. A reasonable agreement is found between the theoretical predictions and the available experimental spectral data. The forward ESIPT barriers of four target compounds gradually decrease with the increase of molecular size. On the basis of the present calculations, it is a plausible speculation that the larger the size, the faster is the ESIPT rate, and eventually, HPPPI molecule can undergo a completely barrierless ESIPT to the more stable S1 keto form. Additionally, taking HPI as a representative example, the radiationless decays connecting the S0 and S1/S0 conical intersection structures were also studied by constructing a linearly interpolated internal coordinate (LIIC) reaction path. The qualitative analysis shows that the LIIC barrier of HPI in the keto form is remarkably lower than that of its enol‐form, indicating that the former has a big advantage over the latter in the nonradiative process. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
We report the derivation and implementation of analytical nuclear gradients for excited states using time‐dependent density functional theory using the Tamm–Dancoff approximation combined with uncoupled frozen‐density embedding using density fitting. Explicit equations are presented and discussed. The implementation is able to treat singlet as well as triplet states and functionals using the local density approximation, the generalized gradient approximation, combinations with Hartree–Fock exchange (hybrids), and range‐separated functionals such as CAM‐B3LYP. The new method is benchmarked against supermolecule calculations in two case studies: The solvatochromic shift of the (vertical) fluorescence energy of 4‐aminophthalimide on solvation, and the first local excitation of the benzonitrile dimer. Whereas for the 4‐aminophthalimide–water complex deviations of about 0.2 eV are obtained to supermolecular calculations, for the benzonitrile dimer the maximum error for adiabatic excitation energies is below 0.01 eV due to a weak coupling of the subsystems. © 2017 Wiley Periodicals, Inc.  相似文献   

4.
Using mixed quantum–classical dynamics, the lowest part of the UV absorption spectrum and the first deactivation steps of keto‐cytosine have been investigated. The spectrum shows several strong peaks, which mainly come from the S1 and S2 states, with minor contributions from the S3. The semiclassical trajectories, launched from these three states, clearly indicate that at least four states are involved in the relaxation of keto‐cytosine to the ground state. Non‐adiabatic transfer between the ππ* and nπ* excited states and deactivation via three‐state conical intersections is observed in the very early stage of the dynamics. In less than 100 fs, a large amount of population is deactivated to the ground state via several mechanisms; some population remains trapped in the S2 state. The latter two events can be connected to the fs and ps transients observed experimentally.  相似文献   

5.
6.
7.
The Au(I)–Au(I) closed‐shell or aurophilic attraction has been the subject of interest in the experimental and theoretical chemistry fields, due to the intriguing properties associated to it. The presence of phosphorescence in “aurophilic” compounds has been addressed to a wide range of applications, but it has not yet been fully understood. A theoretical study on the electronic and phosphorescent properties of the following series of dinuclear gold complexes has been performed: [Au2(dmpm) (i‐mnt)] ( 1 ), [Au2(μ‐Me‐TU) (μ‐dppm)] ( 2 ), and [Au2(μ‐G)(μ‐dmpe)] ( 3 ). Full geometry optimizations at the second‐order Møller–Plesset perturbation theory (MP2) were carried out for each of the species. These calculations made evident that, at the ground‐state geometry, the Au(I) cations allocated at the center of the ring show a short Au–Au distance below the sum of the van der Waals radii, at the range of the aurophilic attraction. An intermolecular Au(I)–Au(I) closed‐shell attraction for a pair of the systems under study is found. This attraction is comparable to that of the hydrogen bonds. The phosphorescent properties experimentally observed for this series were also characterized through ab initio techniques. The obtained results allow to fit reasonably the excitation energies with the experimental data and to identify a correlation between the strength of the Au(I)–Au(I) interaction and the phosphorescent behavior. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

8.
A comprehensive theoretical study of electronic transitions of naphtho‐homologated base analogs, namely, yy‐T , yy‐C , yy‐A , and yy‐G , was performed. The nature of the low‐lying excited states is discussed, and the results are compared with those from experiment and also with those of y‐bases. Geometrical characteristics of the lowest excited singlet ππ* and nπ* states were explored using the CIS method, and the effects of methanol solution and paring with their complementary natural bases on the relevant absorption and emission spectra of these modified bases were examined. The calculated excitation and emission energies agree well with the measured data, where experimental results are available. In methanol solution, the fluorescence from yy‐A and yy‐G would be expected to occur around 539 and 562 nm, respectively, suggesting that yy‐A is a green‐colored fluorophore, whereas yy‐G is a yellow‐colored fluorophore. The methanol solution was found to red‐shift both the absorption and emission maxima of yy‐A , yy‐T , and yy‐C , but blue‐shift those for yy‐G . Generally, though base pairing has no significant effects on the absorption and fluorescence maxima of yy‐A , yy‐C , and yy‐T , it blue‐shifts those for yy‐G . © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

9.
The structure and electronic properties of the electronic ground state and the lowest excited singlet state (S1) of 5‐fluoroindole (5FI) were determined by using rotationally resolved spectroscopy of the vibration‐less electronic origin of 5FI. From the parameters of the axis reorientation Hamiltonian, the absolute orientation of the transition dipole moment in the molecular frame was determined and the character of the excited state was identified as Lb.  相似文献   

10.
The potential energy surface (PES) for the CHF2CHO molecule in the excited S1 state is calculated by the CASSCF method. The features of the 1‐ and 2‐D cross‐sections of PES are considered in comparison with those of the relative molecules. The vibrational frequencies are calculated in harmonic approximation and the vibrational energy levels for the inversion motion of the carbonyl fragment CCHaO and for the torsion motion of the CHF2‐top are calculated in anharmonic approximation by the 1‐ and 2‐D variational methods. The calculated data are compared with the experimental ones. The problems of the experimental data interpretation are considered. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

11.
12.
We test the performance of four‐component relativistic density functional theory by calculating the static and frequency‐dependent electric dipole–dipole polarizabilities of all (ground‐state) closed‐shell atoms up to Ra. We consider 12 nonrelativistic functionals, including three asymptotically shape‐corrected functionals, by using two smooth interpolation schemes introduced by the Baerends group: the gradient‐regulated asymptotic connection (GRAC) procedure and the statistical averaging of (model) orbital potentials (SAOP). Basis sets of doubly augmented triple‐zeta quality are used. The results are compared to experimental data or to accurate ab initio results. The reference static electric dipole polarizability of palladium has been obtained by finite‐field calculations using the coupled‐cluster singles, doubles, and perturbative triples method within this work. The best overall performance is obtained using hybrid functionals and their GRAC shape‐corrected versions. The performance of SAOP is among the best for nonhybrid functionals for Group 18 atoms but its precision degrades when considering the full set of atoms. In general, we find that conclusions based on results obtained for the rare‐gas atoms are not necessarily representative of the complete set of atoms. GRAC cannot be used with effective core potentials since the asymptotic correction is switched on in the core region.  相似文献   

13.
Two theozymes for the intramolecular aldol reaction of δ‐diketones have been studied using ab initio methods. The presence of both acid/base residues favors several steps of the aldol reaction. The appropriate positioning of these residues can accelerate one of two diastereromeric reaction pathways, the catalyzed aldol reaction being highly stereoselective. Analysis of the geometrical parameters, charge distribution, and the shape of molecular electrostatic potential for the corresponding acid/base catalyzed transition structure allows us to design adequate transition‐state analogs to favor a reactive channel of this intramolecular aldol reaction. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 338–347, 2001  相似文献   

14.
A mechanistic and kinetic study of the OH.‐initiated oxidation of benzaldehyde is carried out using quantum chemical methods and classical transition state theory. We calculate the rate constant for this reaction within the temperature range of 200–350 K at atmospheric pressure. All possible hydrogen abstraction and OH. addition channels are considered and branching ratios are obtained. Tunneling corrections are taken into account for abstraction channels, assuming unsymmetrical Eckart barriers. The aldehydic abstraction is by far the most important reaction channel within the entire range of temperatures studied, especially at room temperature and lower—the temperatures relevant to atmospheric chemistry. The relative importance of all the other possible channels increases slightly with temperature. Branching ratios show that addition at the ring and abstraction of an ortho hydrogen contribute about 1 % each at about 300 K, while the branching ratio for the main reaction decreases from 99 % at 200 K to 93 % at 350 K. The results are compared with available experimental measurements.  相似文献   

15.
The efficiency and accuracy of the perturbation‐selection used in the symmetry‐adapted cluster‐configuration interaction (SAC‐CI) calculations are investigated for several low‐lying valence excited states of 21 medium‐size molecules, including typical chromophores with heterocyclic macrocycles (free‐base porphine, coumarin, indole, and BODIPY), nucleobases, amino acids (tyrosine and tryptophan), polycyclic aromatic hydrocarbons, and organometallics (ferrocene and Re(bpy) ). Benchmark SAC‐CI calculations with up to 110 million operators are performed. The efficiency of the perturbation‐selection depends on the molecular orbitals (MOs); therefore, the canonical MO and localized MO (LMO) obtained by Pipek‐Mezey's method are examined. Except for the highly symmetric molecules, using LMOs improves the efficiency and accuracy of the perturbation‐selection. With using LMOs and perturbation‐selection, sufficiently reliable results can be obtained in less than 10% of the computational costs required for the full‐dimensional calculations. The perturbation‐selection with LMOs is suggested to be a promising method for excited states in larger molecular systems. Copyright © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Consistent basis sets of triple‐zeta valence with polarization quality for main group elements and transition metals from row one to three have been derived for periodic quantum‐chemical solid‐state calculations with the crystalline‐orbital program CRYSTAL. They are based on the def2‐TZVP basis sets developed for molecules by the Ahlrichs group. Orbital exponents and contraction coefficients have been modified and reoptimized, to provide robust and stable self‐consistant field (SCF) convergence for a wide range of different compounds. We compare results on crystal structures, cohesive energies, and solid‐state reaction enthalpies with the modified basis sets, denoted as pob‐TZVP, with selected standard basis sets available from the CRYSTAL basis set database. The average deviation of calculated lattice parameters obtained with a selected density functional, the hybrid method PW1PW, from experimental reference is smaller with pob‐TZVP than with standard basis sets, in particular for metallic systems. The effects of basis set expansion by diffuse and polarization functions were investigated for selected systems. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Electron‐induced dissociations of gas‐phase ternary copper‐2,2′‐bipyridine complexes of Gly‐Gly‐Gly and Gly‐Gly‐Leu were studied on a time scale ranging from 130 ns to several milliseconds using a combination of charge‐reversal (+CR?) and electron‐capture‐induced dissociation (ECID) measured on a beam instrument and electron capture dissociation (ECD) measured in a Penning trap. Charge‐reduced intermediates were observed on the short time scale in the +CR? and ECID experiments but not in ECD. Ion dissociations following electron transfer or capture mostly occurred by competitive bpy or peptide ligand loss, whereas peptide backbone fragmentations were suppressed in the presence of the ligated metal ion. Extensive electron structure theory calculations using density functional theory and large basis sets provided optimized structures and energies for the precursor ions, charge‐reduced intermediates, and dissociation products. The Cu complexes underwent substantial structure changes upon electron capture. Cu was calculated to be pentacoordinated in the most stable singly charged complexes of the [Cu(peptide ? H)bpy]+ ? type where it carried a ~+ 1 atomic charge. Cu coordination in charge‐reduced [Cu(peptide ? H)bpy] intermediates depended on the spin state. The themodynamically more stable singlet states had tricoordinated Cu, whereas triplet states had a tetracoordinated Cu. Cu was tricoordinated in stable [Cu(peptide ? H)bpy]? ? products of electron transfer. [Cu(peptide)bpy]2 + ? complexes contained the peptide ligand in a zwitterionic form while Cu was tetracoordinated. Upon electron capture, Cu was tri‐ or tetracoordinated in the [Cu(peptide)bpy]+ charge‐reduced analogs and the peptide ligands underwent prototropic isomerization to canonical forms. The role of excited singlet and triplet electronic states is assessed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Consistent basis sets of double‐ and triple‐zeta valence with polarization quality for the fifth period have been derived for periodic quantum‐chemical solid‐state calculations with the crystalline‐orbital program CRYSTAL. They are an extension of the pob‐TZVP basis sets, and are based on the full‐relativistic effective core potentials (ECPs) of the Stuttgart/Cologne group and on the def2‐SVP and def2‐TZVP valence basis of the Ahlrichs group. We optimized orbital exponents and contraction coefficients to supply robust and stable self‐consistent field (SCF) convergence for a wide range of different compounds. The computed crystal structures are compared to those obtained with standard basis sets available from the CRYSTAL basis set database. For the applied hybrid density functional PW1PW, the average deviations of calculated lattice constants from experimental references are smaller with pob‐DZVP and pob‐TZVP than with standard basis sets. © 2018 Wiley Periodicals, Inc.  相似文献   

20.
The sensitization mechanisms of a pyrromethene dye with a radical‐generating reagent, 3,5,3′,5′‐tetramethylpyrromethene‐BF2 (BH) with 3,3′,4,4′‐tetrakis(t‐butyldioxycarbonyl)benzophenone (BP), in a poly‐ (methylmethacrylate) (PMMA) film were investigated by laser flash phoptolysis using a total reflection cell and single photon counting. From the laser flash photolysis, strong fluorescence was detected though no transient absorption was detected. The fluorescence intensity was significantly decreased with increasing concentration of BP, apparently exhibiting Perrin‐type static quenching at a quenching radius, Rf = 26 Å. From the examination of decay profile using single photon counting, logarithmic plots of fluorescence decay in a PMMA film afforded a nonlinear, convex reduction, corresponding to a streched exponential decay, while the logarithmic plots in acetonitrile showed a linear relationship. With increasing concentration of BH, the fluorescence maximum was shifted to red, and the intensity of fluorescence was significantly reduced. The red shift of fluorescence, the nonlinear fluorescence logarithmic decay and the large reduction in fluorescence indicate a dispersive photoexcited state and a relaxation of excitation energy hopping across an array of sites with Gaussian energy distribution. Moreover, after incorporating BP, the convex logarithmic plots became more steep, and the fluorescence maximum was also shifted to red, exhibiting a nonstatic quenching process competitive to the excitation energy hopping. Thus the sensitization of photoinitiator system containing BH and BP, whose contents were almost same as that in the commercial products, was due to a static quenching process from dispersive singlet excited BH to BP ground state, and the nonstatic quenching process competitive to the excitation energy hopping was minimal. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号