首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Enantiomers of Tröger's base were separated by capillary electrophoresis using 2IO‐, 3IO‐, and 6IO‐carboxymethyl‐α‐, β‐, and γ‐cyclodextrin and native α‐, β‐, and γ‐cyclodextrin as chiral additives at 0–12 mmol/L for β‐cyclodextrin and its derivatives and 0–50 mmol/L for α‐ and γ‐cyclodextrins and their derivatives in a background electrolyte composed of sodium phosphate buffer at 20 mmol/L concentration and pH 2.5. Apparent stability constants of all cyclodextrin–Tröger's base complexes were calculated based on capillary electrophoresis data. The obtained results showed that the position of the carboxymethyl group as well as the cavity size of the individual cyclodextrin significantly influences the apparent stability constants of cyclodextrin–Tröger's base complexes.  相似文献   

2.
The separation and migration behavior of six isomeric dichlorophenols (DCPs) in cyclodextrin‐modified capillary zone electrophoresis (CD‐CZE) using a phosphate‐borate buffer at alkaline pH with β‐CD and hydroxypropyl‐β‐CD (HP‐β‐CD) as electrolyte modifiers were investigated. The influence of buffer pH and the concentration of β‐cyclodextrins were examined. The results indicate that baseline separation of six isomeric DCPs can be achieved with addition of β‐CD concentration in the range of 2.0‐10 mM or HP‐β‐CD concentration in the range of 4.0‐10 mM at pH 10.0. Binding constants of DCPs to β‐CDs were evaluated for a better understanding of the interaction of DCPs with β‐CDs.  相似文献   

3.
《Electrophoresis》2018,39(7):941-947
In this paper, β‐cyclodextrin (β‐CD) modified gold nanoparticles (AuNPs) coated open tubular column (OT column) was prepared for capillary electrochromatography. The open tubular column was constructed through self‐assembly of gold nanoparticles on 3‐mercaptopropyl‐trimethoxysilane (MPTMS) prederivatized capillary and subsequent modification of thiols β‐cyclodextrin (SH‐β‐CD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet visible spectroscopy were carried out to characterize the prepared open tubular column and synthesized gold nanoparticles. By comparing different coating times of gold nanoparticles and thiols β‐cyclodextrin, we got the optimal conditions for preparing the open tubular column. Also, the separation parameters were optimized including buffer pH, buffer concentration and applied voltage. Separation effectiveness of open tubular column was verified by the separation of four pairs of drug enantiomers including bifonazole, fexofenadine, omeprazole and lansoprazole, and satisfactory separation results were achieved for these analytes studied. In addition, the column showed good stability and repeatability. The relative standard deviation values less than 5% were obtained through intra‐day, inter‐day, and column‐to‐column investigations.  相似文献   

4.
A method for the separation of enantiomers of leucine and phenylalanine benzothiazole derivatives as potential antimicrobial agents was developed using capillary zone electrophoresis with a dual cyclodextrin (CD) system. The best resolution of enantiomers was achieved in 100 mmol/L phosphate background electrolyte (pH 3.5) with the dual CD system consisting of 10 mmol/L of β‐CD with 10 mmol/L of 2‐hydroxypropyl‐β‐cyclodextrin for leucine derivative and 10 mmol/L of 2‐hydroxypropyl‐γ‐cyclodextrin for phenylalanine derivative, respectively. Under the optimal conditions, the highest enantioresolution of 1.25 was achieved in a noncoated‐fused silica capillary at 17°C and 24 kV applied voltage.  相似文献   

5.
Paracetamol, caffeine and ibuprofen are found in over‐the‐counter pharmaceutical formulations. In this work, we propose two new methods for simultaneous determination of paracetamol, caffeine and ibuprofen in pharmaceutical formulations. One method is based on high‐performance liquid chromatography with diode‐array detection and the other on capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation by high‐performance liquid chromatography with diode‐array detection was achieved on a C18 column (250×4.6 mm2, 5 μm) with a gradient mobile phase comprising 20–100% acetonitrile in 40 mmol L?1 phosphate buffer pH 7.0. The separation by capillary electrophoresis with capacitively coupled contactless conductivity detection was achieved on a fused‐silica capillary (40 cm length, 50 μm i.d.) using 10 mmol L?1 3,4‐dimethoxycinnamate and 10 mmol L?1 β‐alanine with pH adjustment to 10.4 with lithium hydroxide as background electrolyte. The determination of all three pharmaceuticals was carried out in 9.6 min by liquid chromatography and in 2.2 min by capillary electrophoresis. Detection limits for caffeine, paracetamol and ibuprofen were 4.4, 0.7, and 3.4 μmol L?1 by liquid chromatography and 39, 32, and 49 μmol L?1 by capillary electrophoresis, respectively. Recovery values for spiked samples were between 92–107% for both proposed methods.  相似文献   

6.
Chiral separation of 12 pairs of basic analyte enantiomers including oxybutynin, bambuterol, tradinterol, clenbuterol, clorprenaline, terbutaline, tulobuterol, citalopram, phencynonate, fexofenadine, salbutamol, and penehyclidine was conducted by capillary electrophoresis using a single‐isomer anionic β‐cyclodextrin derivative, heptakis‐(2,3‐diacetyl‐6‐sulfato)‐β‐cyclodextrin as the chiral selector. Parameters influencing separation were studied, including background electrolyte pH, heptakis‐(2,3‐diacetyl‐6‐sulfato)‐β‐cyclodextrin concentration, buffer concentration, and separation voltage. A background electrolyte consisting of 50 mM Tris‐H3PO4 and 6 mM heptakis‐(2,3‐diacetyl‐6‐sulfato)‐β‐cyclodextrin at pH 2.5 was found to be highly efficient for the separation of most enantiomers, with other conditions of normal polarity mode at 10 kV, detection wavelength of 210 nm using hydrodynamic injection for 3 s. Under the optimal conditions, baseline resolution (>1.50) for 11 pairs of enantiomers and somewhat lower resolution for penehyclidine enantiomers (1.17) were generated. Moreover, the possible mechanism of separation of clenbuterol, oxybutynin, salbutamol, and penehyclidine was investigated using a computational modeling method.  相似文献   

7.
The paper reports the results of a study carried out to evaluate the use of three 1‐alkyl‐3‐methylimidazolium‐based ionic liquids as non‐covalent coating agents for bare fused‐silica capillaries and additives of the electrolyte solutions (BGE) for CE of basic proteins in the co‐EOF separation mode. The three ionic liquids are differentiated from each other by the length of the alkyl group on the imidazolium cation, consisting of either an ethyl, butyl or octyl substituent, whereas tetrafluoroborate is the common anionic component of the ionic liquids. Coating the capillary with the ionic liquid resulted in improved peak shape and protein separation, while the EOF was maintained cathodic. This indicates that each ionic liquid is effective at masking the protein interaction sites on the inner surface of the capillary, also when its adsorption onto the capillary wall has not completely neutralized all the negative charges arising from the ionization of the silanol groups and the ionic liquid is not incorporated into the BGE employed for separation. Using the coated capillaries with BGE containing the ionic liquid employed for the coating, at concentration low enough to maintaining the EOF cathodic, both peak shape and protein separation varied to different extents, based on the particular ionic liquid used and its concentration. Fast and efficient separation of the model basic protein mixture in co‐electroosmotic CE is obtained with the 1‐butyl‐3‐methylimidazolium tetrafluoroborate coated capillary and 100 mM acetate buffer (pH 4.0) containing 4.4 mM 1‐butyl‐3‐methylimidazolium tetrafluoroborate as the BGE.  相似文献   

8.
In the past decade, more than 100 different cathinone derivatives slopped over entire Europe due to their enormous popularity. Generally, these novel psychoactive substances are easily available via the internet. This fact leads to various social problems, since cathinones are substances with consciousness‐changing effects and are mainly misused for recreational matters by their consumers. Cathinones possess a chiral center including two enantiomeric forms with potentially different pharmacological behavior. This fact makes analytical method development regarding their chiral separation indispensable. In this study, a chiral capillary zone electrophoresis method for the enantioseparation of 61 cathinone and pyrovalerone derivatives was developed by means of four different β‐cyclodextrin derivatives. As chiral selectors, native β‐cyclodextrin as well as three of its derivatives namely acetyl‐β‐cyclodextrin, 2‐hydroxypropyl‐β‐cyclodextrin, and carboxymethyl‐β‐cyclodextrin were used. The cathinone and pyrovalerone derivatives were either purchased in internet stores or seized by police. As a result, overall 58 of 61 studied substances were partially or baseline separated by at least one of the four chiral selectors using 10 mM of β‐cyclodextrin derivative in a 10 mM sodium phosphate buffer (pH 2.5). Furthermore, the method was found to be suitable for simultaneous enantioseparations, for enantiomeric purity checks and to differentiate between positional isomers. Moreover, an intra‐ and an interday validation was performed successfully for each chiral selector to prove the robustness of the method.  相似文献   

9.
A new member of the family of methoxylalkylamino monosubstituted β‐cyclodextrins, mono‐6A‐(4‐methoxybutylamino)‐6A‐β‐cyclodextrin, has been developed as a chiral selector for enantioseparation in capillary electrophoresis. This amino cyclodextrin exhibited good enantioselectivities for 16 model acidic racemates including three dansyl amino acids at an optimum pH of 6.0. Excellent chiral resolutions over six were obtained for α‐hydroxy acids and 2‐phenoxypropionic acids with 3.0 mM chiral selector. The good chiral recognition for α‐hydroxyl acids was attributed to inclusion complexation, electrostatic interactions, and hydrogen bonding. The hydrogen‐bonding‐enhanced chiral recognition was revealed by NMR spectroscopy. The chiral separation of acidic racemates was further improved with the addition of methanol (≤10 vol%) as an organic additive.  相似文献   

10.
This work documents the influence of the position of single carboxymethyl group on the β‐cyclodextrin skeleton on the enantioselectivity. These synthesized monosubstituted carboxymethyl cyclodextrin (CD) derivatives, native β‐cyclodextrin, and commercially available carboxymethyl‐β‐cyclodextrin with degree of substitution approximately 3 were used as additives into the BGE consisting of phosphate buffer at 20 mmol/L concentration, pH 2.5, and several biologically significant low‐molecular‐mass chiral compounds were enantioseparated by CE. The results indicate that different substituent location on β‐cyclodextrin skeleton has a significant influence on the enantioseparation of the investigated enantiomers. The enantioselectivity of 2IO‐regioisomer was better than with native β‐cyclodextrin. Comparable results to native β‐cyclodextrin were obtained for 6IO‐ regioisomer and the enantioselectivity of 3IO‐regioisomer was even worse than with native β‐cyclodextrin. Commercially available derivative of CD provides better resolutions than the monosubstituted carboxymethyl CD derivatives for most of the investigated analytes.  相似文献   

11.
《Electrophoresis》2017,38(8):1188-1200
To optimize chiral separation conditions and to improve the knowledge of enantioseparation, it is important to know the binding constants K between analytes and cyclodextrins and the electrophoretic mobilities of the temporarily formed analyte‐cyclodextrin‐complexes. K values for complexes between eight phenethylamine enantiomers, namely ephedrine, pseudoephedrine, methylephedrine and norephedrine, and four different β‐cyclodextrin derivatives were determined by affinity capillary electrophoresis. The binding constants were calculated from the electrophoretic mobility values of the phenethylamine enantiomers at increasing concentrations of cyclodextrins in running buffer. Three different linear plotting methods (x ‐reciprocal, y ‐reciprocal, double reciprocal) and nonlinear regression were used for the determination of binding constants with β‐cyclodextrin, (2‐hydroxypropyl)‐β‐cyclodextrin, methyl‐β‐cyclodextrin and 6‐O‐α‐maltosyl‐β‐cyclodextrin. The cyclodextrin concentration in a 50 mM phosphate buffer pH 3.0 was varied from 0 to 12 mM. To investigate the influence of the binding constant values on the enantioseparation the observed electrophoretic selectivities were compared with the obtained K values and the calculated enantiomer‐cyclodextrin‐complex mobilities. The different electrophoretic mobilities of the temporarily formed complexes were crucial factors for the migration order and enantioseparation of ephedrine derivatives. To verify the apparent binding constants determined by capillary electrophoresis, a titration process using ephedrine enantiomers and β‐cyclodextrin was carried out. Furthermore, the isothermal titration calorimetry measurements gave information about the thermal properties of the complexes.  相似文献   

12.
The novel enantiomeric separation of acidic and neutral compounds by capillary electrochromatography with β‐cyclodextrin‐bonded positively charged polyacrylamide gels was examined. The columns used are capillaries filled with a positively charged polyacrylamide gel, a so‐called monolithic stationary phase, to which allyl carbamoylated β‐CD derivatives covalently bind. The capillary wall was activated first by bifunctional reagent to make the resulting gel bind covalently inside the fused‐silica tubing. Enantiomeric separations of sixteen acidic and two neutral compounds were achieved using the above‐mentioned columns and 200 mmol dm–3 Tris–300 mmol dm–3 boric acid buffer (pH 8.1) as a mobile phase. High efficiencies of up to 150 000 plates m–1 were obtained for dansyl‐DL‐amino acids. The within‐run and between‐run reproducibilities of retention time and separation factor were examined for three dansyl‐DL‐amino acids and warfarin. The relative standard deviations of the within‐run and between‐run reproducibilities of retention time were less than 1.2 and 1.3% over the six injections, respectively. Those of the separation factor were less than 0.3 and 0.2%, respectively. The gel‐filled capillaries were stable for at least four months with intermittent use.  相似文献   

13.
In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl ‐phenylalanine; dl ‐tryptophan) using β‐Cyclodextrin and chiral ionic liquid ([TBA] [l ‐ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β‐CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β‐CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA‐I, 18AA‐II and 3AA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The exhaustive primary‐side alkylation of cyclodextrins has never been achieved directly. The undesired and simultaneous derivatization of the secondary hydroxyl moieties generates intricate isomeric mixtures that are challenging to purify, analyse and characterize. The aim of this study was to develop a chromatography‐free and up‐scalable strategy towards the preparation of per‐6‐O‐methylated cyclodextrin and to test the compound as potential chiral selector. The target molecule was prepared according to a five‐step synthesis by using methyltriphenylphosphonium bromide as catalyst under heterogeneous conditions. The removal of benzyl moieties, used as temporary secondary‐side protecting groups, was attained by applying hydrazine‐carbonate in the presence of Pd/C. All the intermediates were obtained in high yields, thoroughly characterized and their purity was assessed by ad‐hoc developed HPLC methods. The per‐6‐O‐methylated β‐cyclodextrin showed promising chiral recognition ability as background electrolyte additive in cyclodextrin‐modified capillary electrophoresis using the recreational drug methylene‐dioxypyrovalerone as model compound. Additionally, a model for the inclusion geometry between the single isomer host and the selected drug was developed based on the extensive 2D NMR analysis. The versatility of the proposed synthetic strategy opens the way to the industrial production of homogeneously primary‐alkylated cyclodextrins and to their wide application in chiral separation of various drugs.  相似文献   

15.
Large‐volume sample stacking (LVSS) is commonly used as an effective online preconcentration method in capillary zone electrophoresis (CZE). In this paper, the method LVSS combined with CZE has been proposed to analyze camptothecin alkaloids. Optimum separation can be achieved in the following conditions: pH 9.0; 25mm borate buffer containing 20 mm sulfobutylether‐β‐cyclodextrin and 20 mm ionic liquid 1‐ethyl‐3‐methyllimidazole l ‐lactate; applied voltage 20 kV; and capillary temperature 25 °C. The LVSS was optimized as hydrodynamic injection 4 s at 5.0 psi and the polarity switching time was 0.17 min. Under the above conditions, the analytes could be separated completely in <20 min and the detector response was increased compared with conventional hydrodynamic injection. The limits of detection were between 0.20 and 0.78 μg/L. A good linearity was obtained with correlation coefficients from 0.9991 to 0.9997. The recoveries ranged from 97.72 to 103.2% and the results demonstrated excellent accuracy. In terms of the migration time and peak area, the experiment was reproducible. The experimental results indicated that baseline separation can be obtained and this method is suitable for the quantitative determination of camptothecin alkaloids in real samples.  相似文献   

16.
A novel chiral ionic liquid functionalized β‐cyclodextrin, 6‐O‐2‐hydroxpropyltrimethylammonium‐β‐cyclodextrin tetrafluoroborate ([HPTMA‐β‐CD][BF4]), was synthesized and used as a chiral selector in capillary electrophoresis. [HPTMA‐β‐CD][BF4] not only increased the solubility in aqueous buffer in comparison with the parent compound, but also provided a stable reversal electroosmotic flow, and the enantioseparation of eight chiral drugs was examined in phosphate buffer containing [HPTMA‐β‐CD][BF4] as the chiral selector. The effects of the [HPTMA‐β‐CD][BF4] concentration and the background electrolyte pH were studied. Moreover, the chiral separation abilities of β‐CD and [HPTMA‐β‐CD][BF4] were compared and possible mechanisms for the chiral recognition of [HPTMA‐β‐CD][BF4] are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A capillary electrophoretic method for the enantioseparation of ofloxacin and its five related substances (potential impurities, indicated as impurities B–F) was developed using β‐cyclodextrin derivatives as chiral selectors. To our knowledge, there are no previous studies about using capillary electrophoresis for the separation of impurities B–D. Six β‐cyclodextrin derivatives including cationic (piperidine‐ and cyclohexylamine‐), neutral (dimethyl‐ and hydroxypropyl‐), and anionic (carboxymethyl‐ and sulfated‐) β‐cyclodextrin derivatives were tested and operational parameters such as buffer pH and concentration of β‐cyclodextrin derivatives were investigated. The best resolutions were all obtained with anionic β‐cyclodextrin derivatives: ofloxacin, impurities C–F could be best resolved with carboxymethyl‐β‐cyclodextrin at satisfactory resolutions of 8.27, 9.98, 5.92, 8.49 and 6.78, respectively, while for impurity B, a particularly impressive resolution value, up to 21.38, was observed using sulfated‐β‐cyclodextrin. The enhancement of enantioseparation observed for the tested analytes using anionic β‐cyclodextrin derivatives might be due to some favorable interaction between selectors and analytes. Given the fact that the selection of chiral selector depends on the structures of analytes, with the help of structural similarities and differences of the analytes, the structure–separation relationship was further discussed.  相似文献   

18.
郑志侠屈锋  林金明 《中国化学》2003,21(11):1478-1484
Chiral separation of dausyl amino acids by capillary electrophoresis using mixed selectors of Mn(ll)-L-alanine complex and β-cyclodextrin (β-CD) was studied. Resolution was considerably superior to that obtained by using either Mn (Ⅱ)-L-alanine complex or β-CD alone. The effects of separation parameters, such as pH value of buffer solution, capillary temperature, the concentration of Mn (Ⅱ)-L-alanine complex, the types of CD and ligand on the migration times and resolutions were investigated. Six different transition metal complexes,Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and Cd(Ⅱ)-L-alanine complexes have been employed and compared with Mn(Ⅱ)complex. Differences in retention and selectivity were found.The substitution of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ) and Ni(Ⅱ) for Mn(Ⅱ) resulted in a better chiral resolution while Hg(Ⅱ) and Cd(Ⅱ) showed poorer resolution abilities. The chiral separation mechanism was also discussed briefly.  相似文献   

19.
Capillary electrophoresis with indirect UV detection was applied to the analysis of a mixture of 3‐quinuclidinol and its four quaternary derivatives (N‐methyl, N‐ethyl, N‐propyl, and N‐isopropyl derivative). 10 mM imidazole acetate buffer, pH = 4.0 offers suitable detection sensitivity (LOD = 1 μmol L–1) and permits separation of the mixture except for the pair 3‐quinuclidinol–N‐methyl derivative. The separation of all analytes was achieved on addition of 15 mmol L–1 β‐cyclodextrin or 25% (w/w) polyethylene glycol 2000 to the background electrolyte. The optimized method was employed for the analysis of pond water spiked with these analytes. Actual ionic mobilities of the studied compounds were measured using mobility standards (potassium, sodium, tetramethyl‐ and tetrabutylammonium). The migration index was derived as another identification parameter based on migration data and the precision of the obtained values is discussed in brief.  相似文献   

20.
A nanoliquid chromatographic method for the stereoisomer separation of some flavanone aglycones and 7‐O‐glycosides has been proposed employing a C18 capillary column and a chiral mobile‐phase additive such as cyclodextrin. The chiral separation of eriodictyol, naringenin, and hesperitin was obtained by addition of carboxymethyl‐β‐cyclodextrin to the mobile phase, whereas eriocitrin, naringin, narirutin, and hesperidin diastereoisomers were resolved by using sulfobutyl ether‐β‐cyclodextrin. The influence of the composition of the mobile phase, the length of the capillary column, and the flow rate on the chiral recognition were investigated. At optimum conditions, baseline separation for the selected aglycones and glycosylated forms were achieved with a mobile phase consisting of 50 mM sodium acetate buffer pH 3 and 30% methanol containing 20 mM of carboxymethyl‐β‐cyclodextrin and 10 mM of sulfobutyl ether‐β‐cyclodextrin, respectively. Precision, linearity, and sensitivity of the method were tested. Limits of detection and quantification for the studied flavanone glycosides were in the range 1.3‐2.5 and 7.5‐12.5 µg/mL, respectively. The method was used for the determination of the diastereomeric composition of the flavanone‐7‐O‐glycosides in Citrus juices after solid‐phase extraction procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号