首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saffron is a widespread consumed spice containing many phytochemicals. It is often used in dairy technologies to enhance color and flavor of cheeses, but it is also known for its several therapeutic effects, as well as its antiproliferative and anticancer properties. In this study High Performance Liquid Chromatography was used to characterize saffron bioactive compounds in cow and ewe cheeses made with saffron, and the antiproliferative effect of the crocin-rich extracts from cheeses was investigated on different cellular lines (CaCo2, MDA-MB-231 and HeLa) by MTT assay. Crocins were observed in all cheese samples, with the total content ranging between 0.54 and 30.57 mg trans-4-GG/100 g cheese, according to the different cheese making process. Picrocrocin was detected in no cheese (probably due to its degradation during cheese making), while safranal was detected only in one ewe cheese (mainly due to its high volatility). HeLa and MDA-MB-231 cells were sensitive to treatment with crocin-rich extracts from cheeses, while no effect was observed on CaCo2 cells. The chemical environment of the food matrix seems to have a great influence on the crocin antiproliferative effect: the crocin-rich extracts from cheese with both high residual N/protein and fat contents showed increased antiproliferative effect compared to pure crocin (trans-4-GG), but cheeses from different milk species (type of fats and proteins) could also play an important role in modulating crocin’s antiproliferative effects.  相似文献   

2.
The aim of the present study was to evaluate the hypolipidemic and antioxidant potential of saffron and its active constituent, crocin, in hyperlipidemic rats. The animals fed either with normal fat diet or high fat diet were administered orally saffron (25, 50, and 100 mg/kg) or crocin (4.84, 9.69, and 19.38 mg/kg) in their respective groups for five consecutive days. Biochemical estimations of triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), alkaline phosphatase (ALP), aspartate transaminase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA), glutathione peroxidase enzyme activity (GSHPx), total glutathione (GSH), and oxidized glutathione (GSSG) in serum and superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive species (TBARS), ferric reducing/antioxidant power (FRAP), and total sulfhydryl (SH) groups in liver tissue homogenate were carried out. Both saffron and crocin were effective in decreasing the elevated levels of TG, TC, ALP, AST, ALT, MDA, GSHPx, GSH, and GSSG in serum and increasing SOD, CAT, FRAP, and SH values in liver tissue with reduction in TBARS. The saffron was found to be superior to crocin indicating the involvement of other potential constituents of saffron apart from crocin for its synergistic behavior of quenching the free radicals and ameliorating the damages of hyperlipidemia.  相似文献   

3.
A non-aqueous capillary electrophoresis (NACE) method for quantifying the seven crocin metabolites that are the major biologically active ingredients of saffron was developed. Separation is done by using a fused silica capillary filled with a 12.5 mM H3BO3/37.5 mM sodium tetraborate methanolic solution as background electrolyte. The results obtained were compared with the total index "safranal value", widely used as a quality measure of saffron products. The comparison revealed that the proposed NACE method provides useful information not obtained in the safranal value. Infact, samples with a similar safranal value can contain crocin metabolites in different concentrations and relative proportions. This new method is very useful for quality control in commercial saffron samples.  相似文献   

4.
Nitrogen-linked hexaazatrinaphthylene polymer ( N2-HATN ) as organic cathode material with low HOMO–LOMO gap was synthesized and was observed to possess reversible high capacity and unexpected long-term cycling stability. The pre-treated N2-HATN and pRGO combination demonstrated good structure compatibility and the resultant cathode exhibited a constant increment of capacity during the redox cycles. The initial capacity at 0.05 A g−1 was 406 mA h−1 g−1, and increased to 630 mA h−1 g−1 after 70 cycles. At 0.5 A g−1 discharging rate, the capacity increased from an initial value of 186 mA h−1 g−1 to 588 mA h−1 g−1 after 1600 cycles. The pseudocapacitance-type behavior is postulated to be attributed to the structure compatibility between the active material and pRGO.  相似文献   

5.
Background: Colorectal cancer (CRC) is one of the most common cancers worldwide. One of its subtypes is associated with defective mismatch repair (dMMR) genes. Saffron has many potentially protective roles against colon malignancy. However, these roles in the context of dMMR tumors have not been explored. In this study, we aimed to investigate the effects of saffron and its constituents in CRC cell lines with dMMR. Methods: Saffron crude extracts and specific compounds (safranal and crocin) were used in the human colorectal cancer cell lines HCT116, HCT116+3 (inserted MLH1), HCT116+5 (inserted MSH3), and HCT116+3+5 (inserted MLH1 and MSH3). CDC25b, p-H2AX, TPDP1, and GAPDH were analyzed by Western blot. Proliferation and cytotoxicity were analyzed by MTT. The scratch wound assay was also performed. Results: Saffron crude extracts restricted (up to 70%) the proliferation in colon cells with deficient MMR (HCT116) compared to proficient MMR. The wound healing assay indicates that deficient MMR cells are doing better (up to 90%) than proficient MMR cells when treated with saffron. CDC25b and TDP1 downregulated (up to 20-fold) in proficient MMR cells compared to deficient MMR cells, while p.H2AX was significantly upregulated in both cell types, particularly at >10 mg/mL saffron in a concentration-dependent manner. The reduction in cellular proliferation was accompanied with upregulation of caspase 3 and 7. The major active saffron compounds, safranal and crocin reproduced most of the saffron crude extracts’ effects. Conclusions: Saffron’s anti-proliferative effect is significant in cells with deficient MMR. This novel effect may have therapeutic implications and benefits for MSI CRC patients who are generally not recommended for the 5-fluorouracil-based treatment.  相似文献   

6.
The addition of natural antioxidants to the bakery products containing fats can extend their shelf life, and it may be more attractive to consumers. In this research, the antioxidant effect of spice extracts and synthetic antioxidant on oxidative stability of fat extracted from cookies was evaluated by differential scanning calorimetry (DSC). The results revealed that addition of spice extracts to the cookies in comparison to cookies without additives reduced the oxidation as evidenced by higher the onset oxidation temperature (t ON) of antioxidant-treated samples. Using the Ozawa–Flynn–Wall method, the activation energies (E a/kJ mol?1) and pre-exponential factors (Z/min?1) and then induction times (τ/min) were calculated and also used for evaluation of antioxidants efficiency. After baking, cookies were also subjected to sensory studies and to instrumental measurements of colour changes. Among the samples studied, cookies with 0.02 % of rosemary or 0.2 % thyme extracts showed good sensorial acceptability. Cookies fortified with spice extracts also characterised greater lightness compared to the control sample.  相似文献   

7.
Background: Nanotechnology application has widespread use in many products. Copper nanoparticles (CuNPs) are widely used in industrial applications. The present study was conducted to investigate the effect of the ethanolic saffron extract (ESE) as a natural antioxidant on the hepatotoxicity induced by CuNPs in male mice. Methods: The characterization of CuNPs was determined using ultraviolet–visible absorption spectroscopy, particle size analysis, zeta potential, Fourier-transform infrared spectroscopy, and electron microscope. The effect of saffron on the hepatotoxicity induced by CuNPs in mice was evaluated by evaluating the survival rate of the mice, oxidative stress, antioxidant capacity, DNA evaluation, as well as its effect on the histology and transmission electron microscope of the liver. Results: The results revealed that all parameters were affected in a dose-dependent manner by CuNPs. These effects have been improved when the treatment of CuNPs is combined with ethanolic saffron extract. Conclusions: We can conclude that saffron and its bioactive crocin portion can prevent CuNP-induced oxidative liver damage. This substance should be useful as a new pharmacological tool for oxidative stress prevention.  相似文献   

8.
Saffron is a valued herb, obtained from the stigmas of the C. sativus Linn (Iridaceae), with therapeutic effects. It has been described in pharmacopoeias to be variously acting, including as an anti-depressant, anti-carcinogen, and stimulant agent. The therapeutic effects of saffron are harbored in its bioactive molecules, notably crocins, the subject of this paper. Crocins have been demonstrated to act as a monoamine oxidase type A and B inhibitor. Furthermore, saffron petal extracts have experimentally been shown to impact contractile response in electrical field stimulation. Other research suggests that saffron also inhibits the reuptake of monoamines, exhibits N-methyl-d-aspartate antagonism, and improves brain-derived neurotrophic factor signaling. A host of experimental studies found saffron/crocin to be similarly effective as fluoxetine and imipramine in the treatment of depression disorders. Saffron and crocins propose a natural solution to combat depressive disorders. However, some hurdles, such as stability and delivery, need to be overcome.  相似文献   

9.
To address the problems associated with poor conductivity and large volume variation in practical applications as a conversion cathode, engineering of hierarchical nanostructured FeOF coupled with conductive decoration is highly desired, yet rarely reported. Herein, 3D starfish-like FeOF on reduced graphene oxide sheets (FeOF/rGO) is successfully prepared, for the first time, through a combination of solvothermal reaction, self-assembly, and thermal reduction. Integrating the structural features of the 3D hierarchical nanostructure, which favorably shorten the path for electron/ion transport and alleviate volumetric changes, with those of graphene wrapping, which can further enhance the electrical conductivity and maintain the structural stability of the electrode, the as-prepared FeOF/rGO composite exhibits a superior lithium-storage performance, including a high reversible capacity (424.5 mA h−1 g−1 at 50 mA g−1), excellent stability (0.016 % capacity decay per cycle during 180 cycles), and remarkable rate capability (275.8 mA h−1 g−1 at 2000 mA g−1).  相似文献   

10.
Surface regulation is an effective strategy to improve the performance of catalysts, but it has been rarely demonstrated for nitrogen reduction reaction (NRR) to date. Now, surface-rough Rh2Sb nanorod (RNR) and surface-smooth Rh2Sb NR (SNR) were selectively created, and their performance for NRR was investigated. The high-index-facet bounded Rh2Sb RNRs/C exhibit a high NH3 yield rate of 228.85±12.96 μg h−1 mg−1Rh at −0.45 V versus reversible hydrogen electrode (RHE), outperforming the Rh2Sb SNRs/C (63.07±4.45 μg h−1 mg−1Rh) and Rh nanoparticles/C (22.82±1.49 μg h−1 mg−1Rh), owing to the enhanced adsorption and activation of N2 on high-index facets. Rh2Sb RNRs/C also show durable stability with negligible activity decay after 10 h of successive electrolysis. The present work demonstrates that surface regulation plays an important role in promoting NRR activity and provides a new strategy for creating efficient NRR electrocatalysts.  相似文献   

11.
A peroxygenase-catalysed hydroxylation of organosilanes is reported. The recombinant peroxygenase from Agrocybe aegerita (AaeUPO) enabled efficient conversion of a broad range of silane starting materials in attractive productivities (up to 300 mM h−1), catalyst performance (up to 84 s−1 and more than 120 000 catalytic turnovers). Molecular modelling of the enzyme-substrate interaction puts a basis for the mechanistic understanding of AaeUPO selectivity.  相似文献   

12.
《Electroanalysis》2018,30(1):38-47
The aim of this study is the development of a miniaturized voltammetric method for the determination of an antimycobacterial agent 1‐hydroxy‐N‐(4‐nitrophenyl)naphthalene‐2‐carboxamide (HNN) in a single drop (20 μL) of a solution by cathodic and anodic voltammetry at a glassy carbon electrode. Cyclic voltammetry was used to investigate its redox properties followed by the optimization of differential pulse voltammetric determination in a regular 10 mL volume. The optimal medium for the analytical application of both cathodic and anodic voltammetry was found to be Britton‐Robinson buffer pH 7.0 and dimethyl sulfoxide (9 : 1, v/v). HNN gave one cathodic peak at around −0.6 V and one anodic peak at around +0.2 V vs. Ag|AgCl (3 mol L−1 KCl) reference electrode. Determination of HNN in a 10 mL volume gave the limit of quantification around 10 nmol L−1 by both adsorptive stripping anodic and cathodic voltammetry. Afterwards, miniaturized voltammetric methods in a single drop of solution (20 μL) were investigated. This approach requested some modifications of the cell design and voltammetric procedures. A novel method of removing dissolved oxygen in a single drop had to be developed and tested. Developed miniaturized voltammetric methods gave parameters comparable to the determination of HNN in 10 mL. The applicability of the miniaturized method was verified by the determination of HNN in a drop of a bacterial growth medium.  相似文献   

13.
The determination of organic and inorganic compounds in a single run is still a great challenge. In this paper, we developed a method for fast simultaneous determination of ascorbic acid (AA) and zinc ions (Zn) using batch injection analysis with detection by square-wave anodic stripping voltammetry (BIA-SWASV). Britton-Robinson (BR) buffer solution (pH=6.0) as the supporting electrolyte and boron doped diamond (BDD) as the working electrode. The method presented favorable analytical characteristics such as fast response (67 injections h−1), low detection limits (0.2 and 5.4 μmol L−1 for Zn ions and AA, respectively) and recovery values of 99±3%.  相似文献   

14.
Cancer is the second leading cause of death globally with an estimated 9.6 million deaths in 2018 and a sustained rise in its incidence in both developing and developed countries. According to the WHO, about 1 in 6 deaths is due to cancer. Despite the emergence of many pioneer therapeutic options for patients with cancer, their efficacy is still time-limited and noncurative. Thus, continuous intensive screening for superior and safer drugs is still ongoing and has resulted in the detection of the anticancer properties of several phytochemicals. Among the spices, Crocus sativus L. (saffron) and its main constituents, crocin, crocetin, and safranal, have attracted the interest of the scientific community. Pharmacological experiments have established numerous beneficial properties for this brilliant reddish-orange dye derived from the flowers of a humble crocus family species. Studies in cultured human malignant cell lines and animal models have demonstrated the cancer prevention and antitumor activities of saffron and its main ingredients. This review provides an insight into the advances in research on the anticancer properties of saffron and its components, discussing preclinical data, clinical trials, and patents aiming to improve the pharmacological properties of saffron and its major ingredients.  相似文献   

15.
The novel bulky diphosphite (P∩P) ligands ( 3 and 4 ) based on the 2,7,9,9‐tetramethyl‐9H‐xanthene‐4,5‐diol ( 2 ) backbone were investigated in the Rh‐catalyzed hydroformylation of oct‐1‐ene, styrene, and (E)‐oct‐2‐ene. These diphosphites gave rise to very active and selective catalysts for the hydroformylation of oct‐1‐ene to nonanal with average rates>10000 (mol aldehyde)(mol Rh)−1h−1 (P(CO/H2)=20 bar, T=80°, [Rh]=1 mM ) and maximum selectivities of 79% for the linear product. Relatively high selectivities towards the linear aldehyde (up to 70%, linear/branched up to 2.3) but very high activities (up to 39000 (mol aldehyde)(mol Rh)−1h−1) were observed for the hydroformylation of styrene in the presence of these bidentate ligands (P(CO/H2)=2 – 10 bar, T=120°, [Rh]=0.2 mM ). Remarkable activities (up to 980 (mol aldehyde)(mol Rh)−1h−1) were achieved with these diphosphites for the hydroformylation of (E)‐oct‐2‐ene with selectivities for the linear product of 74% (l/b up to 2.8, P(CO/H2)=2 bar, T=120°, [Rh]=1 mM ). A detailed study of the solution structure of the catalyst under catalytic conditions was performed by NMR and high‐pressure FT‐IR. The spectroscopic data revealed that under hydroformylation conditions, the bidentate ligands rapidly formed stable, well‐defined catalysts with the structure [RhH(CO)2(P∩P)]. All the ligands showed a preference for an equatorial‐apical ( ea ) coordination mode in the trigonal bipyramidal Rh‐complexes, indicating that a bis‐equatorial ( ee ) coordination is not a prerequisite for highly selective catalysts.  相似文献   

16.
Electrosynthesis of NH3 through the N2 reduction reaction (NRR) under ambient conditions is regarded as promising technology to replace the industrial energy- and capital-intensive Haber–Bosch process. Herein, a room-temperature spontaneous redox approach to fabricate a core–shell-structured Au@CeO2 composite, with Au nanoparticle sizes below about 10 nm and a loading amount of 3.6 wt %, is reported for the NRR. The results demonstrate that as-synthesized Au@CeO2 possesses a surface area of 40.7 m2 g−1 and a porous structure. As an electrocatalyst, it exhibits high NRR activity, with an NH3 yield rate of 28.2 μg h−1 cm−2 (10.6 μg h−1 mg−1cat., 293.8 μg h−1 mg−1Au) and a faradaic efficiency of 9.50 % at −0.4 V versus a reversible hydrogen electrode in 0.01 m H2SO4 electrolyte. The characterization results reveal the presence of rich oxygen vacancies in the CeO2 nanoparticle shell of Au@CeO2; these are favorable for N2 adsorption and activation for the NRR. This has been further verified by theoretical calculations. The abundant oxygen vacancies in the CeO2 nanoparticle shell, combined with the Au nanoparticle core of Au@CeO2, are electrocatalytically active sites for the NRR, and thus, synergistically enhance the conversion of N2 into NH3.  相似文献   

17.
A liquid chromatographic tandem mass spectrometric validated method was developed for the detection of chemicals attributing color, flavor, taste and medicinal properties to saffron (Crocus sativus L. stigma). Ultrasonic extractions of saffron stigmas were followed by LC procedure with Pinnacle II Cyano (5 μm 150 × 2.1 mm) column and acetonitrile: water (70:30, v/v) as mobile phase. Deprotonated ions formed by a turbo ion spray in negative MS mode were used to detect the analytes. MS–MS detection was by monitoring precursors (m/z) fragmentations; of 149 → 113 (safranal), 327 → 283 (crocetin), 329 → 167 (picrocrocin), 355 → 327 (dimethyl crocetin), 489 → 327 (crocin E), 535 → 489 (carotenes), 651 → 327 (crocin C), 813 → 652 (crocin B), 975 → 651 (crocin A) and 1,137 → 813 (crocin F). The method was validated for linearity, precision, repeatability and specificity.  相似文献   

18.
Synthesis of sulfonated porous polymers with improved hydrophobicity and stability is of extreme importance in both academic research and industrial applications. However, there is often a trade-off between acidity and surface hydrophobicity of sulfonated polymers. In this study, we report a strategy for the synthesis of sulfonated porous organic polymers (S-PT) with improved hydrophobicity via free radical polymerization method by using a rigid and large multidentate monomer, 1,3,5-tri(4-vinylphenyl)-benzene, having a hydrophobic core. The results of vapor adsorption measurement show that S-PT has more hydrophobic properties than sulfonated poly(divinylbenzene) (S-PD), attributed to the hydrophobic core of its multidentate monomer. Furthermore, the optimization of sulfonation time established a balance between surface acidity and hydrophobicity. Under optimized conditions, S-PT afforded up to 113 mmol g−1 h−1 TOF in the esterification of oleic acid with methanol, more active than commercial Amberlyst-15 with TOF of 15 mmol g−1 h−1 and Nafion NR50 with TOF of 7 mmol g−1 h−1. We believe that the findings of this study will provide useful insights to advance the design and synthesis of solid acid catalysts for organic transformations.  相似文献   

19.
The Al–Sn, which is immiscible alloy, film was prepared by e-beam deposition to explore the possibility as anode material for lithium ion batteries for the first time. The film has a complex structure with tiny Sn particles dispersed homogeneously in the Al active matrix. The diffusion coefficients of Li+ in these Al–Sn alloy films were determined to be 2.1–3.2 × 10−8 cm2/s by linear sweep voltammetry. The film electrode with high Al content (Al–33wt%Sn) delivered a high initial discharge capacity of 972.8 mA h g−1, while the film electrode with high Sn content (Al–64wt%Sn) with an initial discharge capacity of 552 mA h g−1 showed good cycle performance indicated by retaining a capacity of about 381 mA h g−1 after 60 cycles. Our preliminary results demonstrate that Al–Sn immiscible alloy is a potential candidate for anodic material of lithium ion batteries.  相似文献   

20.
Methods to synthesize crystalline covalent triazine frameworks (CTFs) are limited and little attention has been paid to development of hydrophilic CTFs and photocatalytic overall water splitting. A route to synthesize crystalline and hydrophilic CTF-HUST-A1 with a benzylamine-functionalized monomer is presented. The base reagent used plays an important role in the enhancement of crystallinity and hydrophilicity. CTF-HUST-A1 exhibits good crystallinity, excellent hydrophilicity, and excellent photocatalytic activity in sacrificial photocatalytic hydrogen evolution (hydrogen evolution rate up to 9200 μmol g−1 h−1). Photocatalytic overall water splitting is achieved by depositing dual co-catalysts in CTF-HUST-A1, with H2 evolution and O2 evolution rates of 25.4 μmol g−1 h−1 and 12.9 μmol g−1 h−1 in pure water without using sacrificial agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号