首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino alcohols in l‐ valinol were effectively separated and quantified using hydrophilic interaction chromatography with fluorescence detection. The influence of the mobile phase (salt type, buffer concentration, and pH) on retention was studied. A column TSKgel amide and mobile phase consisting of 10 mM acetate buffer pH 4.0 and acetonitrile (20:80, v/v) provided well‐ separated symmetric peaks of analytes. Fluorescence detection was performed using postcolumn derivatization with o‐phtaldialdehyde/2‐mercaptoethanol at an excitation and emission wavelength of 345 and 450 nm, respectively. Simple sample pretreatment and very high sensitivity represent the main advantages of the developed method. After validation, the method was successfully applied to the analysis of commercial samples of l‐ valinol.  相似文献   

2.
A rapid procedure for the determination of memantine based on hydrophilic interaction chromatography with fluorescence detection was developed. Fluorescence detection after postcolumn derivatization with o‐phtaldialdehyde/2‐mercaptoethanol was performed at excitation and emission wavelengths of 345 and 450 nm, respectively. The postcolumn reaction conditions such as reaction temperature, derivatization reagent flow rate, and reagents concentration were studied due to steric hindrance of amino group of memantine. The derivatization reaction was applied for the hydrophilic interaction liquid chromatography method which was based on Cogent Silica‐C stationary phase with a mobile phase consisting of a mixture of 10 mmol/L citric acid and 10 mmol/L o‐phosphoric acid (pH 6.0) with acetonitrile using an isocratic composition of 2:8 v/v. The benefit of the reported approach consists in a simple sample pretreatment and a quick and sensitive hydrophilic interaction chromatography method. The developed method was validated in terms of linearity, accuracy, precision, and selectivity according to the International Conference on Harmonisation guidelines. The developed method was successfully applied for the analysis of commercial memantine tablets.  相似文献   

3.
Short‐chain aliphatic amines are a class of hazardous impurities in drug substances. A simple method, involving derivatization followed by high‐performance liquid chromatography with diode array detection, has been developed for residue determination of eight aliphatic amines simultaneously in drug substances. Different halonitrobenzenes derivatization reagents were systematically compared. As a result, 1‐fluoro‐2‐nitro‐4‐(trifluoromethyl)benzene was selected since the derivatization effectively shifted the absorption wavelength to the visible region (400–450 nm), where most drug substances, impurities and even the derivatization reagent absorb very weakly. Due to the redshift effect, interference was minimized and adequately low limits of quantitation were reached (0.24–0.80 nmol/mL). Moreover, the derivatization reaction was readily carried out in dimethyl sulfoxide at room temperature for 1 h using N ,N‐diisopropylethylamine as catalyst to achieve the highest yield. Without any pre‐treatment, the derivatives were analyzed by high‐performance liquid chromatography with diode array detection. The high stability of the derivatives within 24 h at room temperature (RSD<1.04%) further facilitated the simultaneous preparation and consecutive analysis of quantities of samples. Finally, the proposed method was successfully applied for residue determination of eight aliphatic amines simultaneously in eight drug substance samples. This study could be helpful for the routine analysis and residue control of aliphatic amines in drug substances.  相似文献   

4.
利用新型荧光试剂4-(1H-菲并[9,10-d]咪唑-2-)苯甲酸(PIBA)进行柱前衍生并经荧光检测对脂肪胺进行了高效液相色谱(HPLC)分离和在线质谱定性。激发和发射波长分别为ex=261nm,em=443nm。80℃下在吡啶溶剂中用N-乙基-N’-[(3-二甲氨基)丙基]碳二亚胺盐酸盐(EDC)做催化剂,衍生反应10min后获得稳定的荧光产物。在EclipseXDB-C8色谱柱(4.6150mm,5mm)上,梯度洗脱对12种游离脂肪胺衍生物进行了优化分离。采用大气压化学电离源(APCI)正离子模式,实现了各种脂肪胺衍生物的测定。多数脂肪胺的线性回归系数大于0.9999,检测限为10.5~53.4fmol。  相似文献   

5.
In the present study, we report a new method for the determination of two primary thiols, cysteine (CYS) and glutathione (GSH), by hydrophilic interaction LC. The polar analytes are separated isocratically using a mobile phase consisting of 65% acetonitrile/35% ammonium acetate (15 mmol/L, pH 2.0) and are detected at 285 nm following on‐line postcolumn derivatization by the thiol‐selective reagent methyl propiolate. The main figures of merit included linearity in the range of 5–200 μmol/L and an LOD 0.6 μmol/L for both compounds. The absence of matrix effect allowed the determination of CYS and GSH in various yeast samples. GSH was present in most of the samples at levels ranging between 0.9 and 3.1 mg/g, whereas CYS was determined in only one sample at a significantly lower concentration. In terms of accuracy, the percent recoveries ranged between 91.2 and 105.6% for GSH, and 91.6 and 106.9% for CYS.  相似文献   

6.
Reaction flow (RF) chromatography with fluorescamine reagent and fluorescence detection (FLD) was used for the analysis of amino acids. The performance of RF chromatography was tested against several optimized conventional postcolumn derivatization (PCD) methods. RF columns achieved greater sensitivity compared to conventional PCD methods, without the need for reaction loops, which resulted in more efficient separations. The RF-PCD method also achieved limits of detection (LOD) from the low picomole to subnanomole range. The calibration data of the RF-PCD technique yielded R2?≥?0.99 and % relative standard deviation in peak areas ranging from 0.34% to 5%. Through reaction flow chromatography, multiplexed detection was also achieved allowing the monitoring and analysis of derivatized and nonderivatized flow streams simultaneously.  相似文献   

7.
We describe a simple, rapid, selective and sensitive HPLC method coupled with fluorescence detection for simultaneous determination of 10 kinds of biogenic amines (BAs: tryptamine, 2‐phenethylamine, putrescine, cadaverine, histamine, 5‐hydroxytryptamine, tyramine, spermidine, dopamine and spermine). BAs and IS were derivated with dansyl chloride. Fluorescence detection (λex/λem = 340/510 nm) was used. A satisfactory result for method validation was obtained. The assay was shown to be linear over the ranges 0.005–1.0 μg/mL for tryptamine, 2‐phenethylamine and spermidine, 0.025–1.0 μg/mL for putrescine, 0.001–1.0 μg/mL for cadaverine, 0.25–20 μg/mL for histamine, 0.25–10 μg/mL for 5–hydroxytryptamine and dopamine, and 0.01–1.0 μg/mL for tyramine and spermine. The limits of detection and the limits of quantification were 0.3–75.0 ng/mL and 1.0–250.0 ng/mL, respectively. Relative standard deviations were ≤5.14% for intra‐day and ≤6.58% for inter‐day precision. The recoveries of BAs ranged from 79.11 to 114.26% after spiking standard solutions of BAs into a sample at three levels. Seven kinds of BAs were found in rat plasma, and the mean values of tryptamine, 2‐phenethylamine, putrescine, cadaverine, histamine, spermidine and spermine determined were 52.72 ± 7.34, 11.45 ± 1.56, 162.56 ± 6.26, 312.75 ± 18.11, 1306.50 ± 116.16, 273.89 ± 26.41 and 41.51 ± 2.07 ng/mL, respectively.  相似文献   

8.
On‐spot derivatization has been suggested for the modification of primary amine containing compounds for their analysis by thin‐layer chromatography hyphenated with matrix‐assisted laser desorption ionization mass spectrometry. The proposed approach was based on post‐chromatographic treatment of separated analytes inside the chromatographic zones on the thin‐layer chromatography plates by tris(2,6‐dimethoxyphenyl)methilium reagent. The derivatives, containing permanent positive charge, reveal exceptionally intense peaks of their cationic moieties and high signal/noise ratio in mass spectra recorded directly from the plates. The method was tested on a series of aliphatic, aromatic, and amine‐containing pharmaceuticals.  相似文献   

9.
Ginger, a widely used spice and traditional Chinese medicine, is prone to be contaminated by mycotoxins. A simple, sensitive, and reproducible method based on immunoaffinity column clean‐up coupled with HPLC and on‐line postcolumn photochemical derivatization with fluorescence detection was developed for the simultaneous determination of aflatoxins (AFs) B1, B2, G1, G2, and ochratoxin A (OTA) in 25 batches of gingers and related products marketed in China for the first time. The samples were first extracted by ultrasonication with methanol/water (80:20, v/v) and then cleaned up with immunoaffinity columns for analysis. Under the optimized conditions, the LODs and LOQs for the five mycotoxins were 0.03–0.3 and 0.1–0.9 μg/kg, respectively. The average recoveries ranged from 81.3–100.8% for AFs and from 88.6–99.5% for OTA at three spiking levels. Good linearity was observed for the analytes with correlation coefficients all >0.9995. All moldy gingers were contaminated with at least one kind of the five investigated mycotoxins, while none of them were found in normal gingers. Ginger powder samples were contaminated slightly with the contamination levels below the LOQs, while ginger tea bags were mainly contaminated by OTA at 1.05–1.19 μg/kg and ginger black tea bags were mainly contaminated by AFs at 3.37–5.76 μg/kg. All the contamination levels were below the legally allowable limits.  相似文献   

10.
利用新型荧光试剂1,2-苯并-3,4-二氢咔唑-9-异丙基氯甲酸酯(BCIC)作为柱前衍生化试剂,在乙腈中,以硼酸钠缓冲液(pH 9)为催化剂,40 ℃下衍生反应10 min后获得稳定的荧光产物.在Eclipse XDB-C8色谱柱上,通过梯度洗脱对12种游离脂肪胺进行了分离和在线质谱定性.激发和发射波长分别为λex=333 nm,λem=390 nm.采用大气压化学电离源(APCI)正离子模式,实现了污水中脂肪胺的定性及相应含量测定.脂肪胺的线性回归系数大于0.9996,检出限在10.57~37.83 fmol.  相似文献   

11.
A simple and sensitive liquid chromatographic method has been developed for the determination of low molecular weight aliphatic amines after their pre-column derivatization with naphthalene-2,3-dicarboxaldehyde (NDA). Derivatization conditions, including the NDA concentration, reaction pH and reaction time have been investigated for method optimization. The chromatographic separation of five amines was performed on ABZ PLUS column using mobile phase of methanol-water (80:20, v/v) at a flow rate of 0.2 mL min−1. The detection was carried out with a 6 mm glassy carbon electrode at the applied potential of 0.7 V versus Ag/AgCl reference electrode. The detection limits were between 23.3 and 34.4 nmol L−1 of amines with a sample injection volume of 2 μL. The present method was applied for the determination of aliphatic amines in lake water. The recovery ranged 52.2-127.9%. The RSD in analytes retention time was less than 0.3% and 2.4% for intra- and inter-day analyses, respectively. The RSD in peak area was below 5.8% for both intra-day and inter-day analyses. The total analysis was completed within 20 min.  相似文献   

12.
In this work, for the first time, headspace (HS) single‐drop microextraction and simultaneous derivatization followed by GC‐MS was developed to determine the aliphatic amines in tobacco samples. In the HS extraction procedure, the mixture of derivatization reagent and organic solvent was employed as the extraction solvent for HS single‐drop microextraction and in situ derivatization of aliphatic amine in the samples. Fast extraction and simultaneous derivatization of the analytes were performed in a single step, and the obtained derivatives in the microdrop extraction solvent were analyzed by GC‐MS. The optimized experiment conditions were: sample preparation temperature of 80°C and time of 30 min, HS extraction solvent (the mixture of benzyl alcohol and 2,3,4,5,6‐pentafluorobenzaldehyde) volume of 2.0 μL, extraction time of 90 s. With the optimal conditions, the method validations were also studied. The method has good linearity (R2 more than 0.99), accepted precision (RSD less than 13%), good recovery (98–104%) and low limit of detection (0.11–0.97 μg/g). Finally, the proposed technique was successfully applied to the analyses of aliphatic amines in tobacco samples of seven different brands. It was further demonstrated that the proposed method offered a simple, low‐cost and reliable approach to determine aliphatic amines in tobacco samples.  相似文献   

13.
A reversed-phase high-performance liquid chromatographic method based on chemical derivatization with fluorescence detection has been developed for analyzing biogenic amines in food and environmental samples. A BODIPY-based fluorescent reagent, 1,3,5,7-tetramethyl-8-(N-hydroxysuccinimidyl butyric ester)-difluoroboradiaza-s-indacene (TMBB-Su), was employed for the derivatization of these biogenic amines at 20 °C for 20 min in pH 7.20 borate buffer after careful investigation of the derivatization conditions including reagent concentration, buffer solution, reaction temperature and reaction time. Separation of biogenic amines with gradient elution was conducted on a C8 column with methanol-tetrahydrofuran-water as mobile phase. The detection limits were obtained in the range from 0.1 to 0.2 nM (signal-to-noise=3). This procedure has been validated using practical samples. The study results demonstrated a potential of employing high-performance liquid chromatography (HPLC) with 1,3,5,7-tetramethyl-8-(N-hydroxysuccinimidyl butyric ester)-difluoroboradiaza-s-indacene labeling as a tool for quantitative analysis of biogenic amines involved in various matrices.  相似文献   

14.
Summary The use of diacetyldihydrofluorescein (DADF) for derivatization of dihydroartemisinin (dihydroqinghaosu, DHQHS) is proposed. The reaction between DHQHS and this reagent in the presence of 4-dimethylaminopyridine (DMAP) and N,N′-dicyclohexylcarbodiimide (DCC) was complete in 8 hours at room temperature giving about 80 per cent theoretical yield. The derivative showed intense UV absorption, thus providing a sensitivity of 0.1 nanogram by UV detection after column separation. The influences of the ratio of the reagents, reaction temperature, chromatographic conditions and the extent of detection linearity were investigated. The reaction gave consistent results and chromatographic separation was not affected by an excess of the reagent or side products.  相似文献   

15.
2-(2-phenyl-1H-phenanthro-[9,10-d]imidazole-1-yl)-acetic acid (PPIA) and 2-(9-acridone)-acetic acid (AAA), two novel precolumn fluorescent derivatization reagents, have been developed and compared for analysis of primary aromatic amines by high performance liquid chromatographic fluorescence detection coupled with online mass spectrometric identification. PPIA and AAA react rapidly and smoothly with the aromatic amines on the basis of a condensation reaction using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) as dehydrating catalyst to form stable derivatives with emission wavelengths at 380 and 440 nm, respectively. Taking six primary aromatic amines (aniline, 2-methylaniline, 2-methoxyaniline, 4-methylaniline, 4-chloroaniline, and 4-bromoaniline) as testing compounds, derivatization conditions such as coupling reagent, basic catalyst, reaction temperature and time, reaction solvent, and fluorescent labeling reagent concentration have also been investigated. With the better PPIA method, chromatographic separation of derivatized aromatic amines exhibited a good baseline resolution on an RP column. At the same time, by online mass spectrometric identification with atmospheric pressure chemical ionization (APCI) source in positive ion mode, the PPIA-labeled derivatives were characterized by easy-to-interpret mass spectra due to the prominent protonated molecular ion m/z [M + H](+) and specific fragment ions (MS/MS) m/z 335 and 295. The linear range is 24.41 fmol-200.0 pmol with correlation coefficients in the range of 0.9996-0.9999, and detection limits of PPIA-labeled aromatic amines are 0.12-0.21 nmol/L (S/N = 3). Method repeatability, precision, and recovery were evaluated and the results were excellent for the efficient HPLC analysis. The most important argument, however, was the high sensitivity and ease-of-handling of the PPIA method. Preliminary experiments with wastewater samples collected from the waterspout of a paper mill and its nearby soil where pollution with aromatic amines may be expected show that the method is highly validated with little interference in the chromatogram.  相似文献   

16.
Acrolein is a major unsaturated aldehyde that is generated during the lipid peroxidation process. The measurement of acrolein in biological samples should be useful to estimate the degree of lipid peroxidation and to evaluate the effect of hazardous properties of acrolein on human health. In this study, a highly sensitive and selective high‐performance liquid chromatography with fluorescence detection method was developed for the determination of acrolein in human serum. The proposed method involves the pre‐column fluorogenic derivatization of acrolein with 1,2‐diamino‐4,5‐dimethoxybenzene (DDB) as a reagent. The fluorescent derivative of acrolein could be detected clearly without any interfering reagent blank peaks because DDB does not have intrinsic fluorescence itself, and the detection limit was 10 nM (signal‐to‐noise ratio = 3). The proposed method could selectively detect acrolein in human serum with a simple protein precipitation treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, a rapid and sensitive method is described for the catecholamines detection in rat brain. CE with LIF detection for the determination of FITC derivatized catecholamines (dopamine, epinephrine, and norepinephrine) was demonstrated. Conventional water bath and microwave‐assisted derivatization methods were employed and a significant reduction in the derivatization time from 2 h for the conventional water bath at room temperature (ca. 25°C) to 2 min for the microwave‐assisted derivatization was achieved. Online sample concentration of field‐amplified sample stacking (FASS) method was employed to achieve higher sensitivities (the detection limits obtained in the normal injection mode ranged from 2.6 to 4.5 ng L?1 and in the FASS mode ranged from 22 to 34 pg L?1). Furthermore, this microwave‐assisted derivatization CE–LIF method successfully determined catecholamines in rat brain with as low as 100 ng L?1 (FASS mode) to 10 μg L?1 (normal injection mode). This CE–LIF method provided better detection ability when compared to the best reports on catecholamines analyses.  相似文献   

18.
The separation methods for proteins with high resolution and sensitivity are absolutely important in the field of biological sciences. Capillary sieving electrophoresis (CSE) is an excellent separation technique for DNA and proteins with high resolution, while LIF permits the most sensitive detection in CSE. Therefore, proteins have to be labeled with fluorescent or fluorogenic reagent to produce fluorescent derivatives. Both precolumn and oncolumn derivatization have been employed for the labeling of proteins in CSE. However, there is no report on the postcolumn derivatization due to the limitation in the use of a standard migration buffer, despite it being a promising method for sensitive detection of proteins. Here, we show a novel postcolumn derivatization method for protein separation by CSE, using a tertiary amine as a buffer component in the running buffer. Tris, which is commonly used as a base in CSE separation buffers, was substituted by tertiary amines, 2‐(diethylamino)ethanol and triethanolamine. A buffer solution containing 2‐(diethylamino)ethanol or triethanolamine can be used for the CSE separation followed by the postcolumn derivatization of proteins, since both reagents are unreactive toward a fluorogenic labeling reagent, naphthalene‐2,3‐dicarbaldehyde. Thus, LIF detection using the postcolumn derivatization permits significant reduction in the LOD (by a factor of 2.4–28) of proteins, compared with conventional absorbance detection.  相似文献   

19.
陈巧珍  胡克季  三浦恭之 《色谱》1999,17(5):480-482
报道了一种用离子色谱分析维生素C、亚硫酸根和硫代硫酸根离子的新方法。在这种方法中采用了四价铈柱后氧化还原反应和三价铈荧光检测法。同时也给出了使用这种方法的一些最佳的实验条件。  相似文献   

20.
In this study, a new capillary electrophoresis (CE) method is described originally for the sensitive and selective determination of short-chain aliphatic amines in biological samples. These amines were converted into their N-hydroxysuccinimidyl fluorescein-O-acetate (SIFA) derivatives and measured by micellar electrokinetic capillary chromatography with laser-induced fluorescence detection. The derivatization conditions and separation parameters for the aliphatic amines were optimized in detail. The SIFA-labeled amines were fully separated within 8.5 min using 25 mM pH 9.6 boric acid electrolyte containing 60 mM sodium dodecyl sulfate (SDS). The parameters of validation such as linearity of response, precision and detection limits were determined. The detection limits were obtained in the range from 0.02 to 0.1 nM, which was the lowest value reported by CE methods. The developed method was successfully employed to monitor aliphatic amines in serum and cells samples. After comparison of other CE methods using different fluorescent probes, the present method represents a powerful tool for the trace determination of aliphatic amines in complex biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号