首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, a self‐assembly of miniaturized pipette‐tip‐based solid‐phase extraction for the simultaneous extraction of nitroaromatic compounds was developed, with electrospun polyacrylonitrile nanofibers used as sorbents. The electrospun polyacrylonitrile nanofibers were characterized by scanning electron microscopy, FTIR analysis and surface area analysis. Good linearities for the four nitroaromatic compounds (2,6‐dinitrotoluene, 2‐nitrotoluene, 3‐nitrotoluene, and 4‐nitrotoluene) were obtained in a range of 250–1000 μg/L with coefficients of determination > 0.99. The limits of detection of these analytes were between 21 and 38 μg/L. The results showed that the pipette‐tip‐based solid‐phase extraction was effective in extracting nitrotoluenes in the pH regime of environmental interest (≈ 6). The investigation also revealed that the optimum mass of electrospun polyacrylonitrile nanofibers sorbent was 15 mg and 20 aspirating/dispensing cycles gave the maximum recovery of nitrotoluenes with 200 μL acetonitrile as the best eluting solvent. Moreover, the performance of the present method was studied for the extraction and determination of nitroaromatic compounds in real environmental water samples and good recoveries ranging from 70 to 115% were found, and respective relative standard deviations of <12% were obtained.  相似文献   

2.
A novel microextraction method based on vortex‐ and CO2‐assisted liquid–liquid microextraction with salt addition for the isolation of furanic compounds (5‐hydroxymethyl‐2‐furaldehyde, 5‐methyl‐2‐furaldehyde, 2‐furaldehyde, 3‐furaldehyde, 2‐furoic and 3‐furoic acids) was developed. Purging the sample with CO2 was applied after vortexing to enhance the phase separation and mass transfer of the analytes. The optimum extraction conditions were: extraction solvent (volume), propyl acetate (125 μL); sample pH, 2.4; vortexing time, 45 s; salt concentration, 25% w/v and purging time, 5 min. The analytes were separated using an ODS Hypersil C18 column (250×4.6 mm i.d, 5 μm) under gradient flow. The proposed method showed good linearities (r2 >0.999), low detection limits (0.08–1.9 μg/L) and good recoveries (80.7–122%). The validated method was successfully applied for the determination of the furanic compounds in concentrated juice (mango, date, orange, pomegranate, roselle, mangosteen and soursop) and dried fruit (prune, date and apricot paste) samples.  相似文献   

3.
An approach involving ion‐pair switchable‐hydrophilicity solvent‐based homogeneous liquid–liquid microextraction coupled to high‐performance liquid chromatography has been applied for the preconcentration and separation of paraquat in a real sample. A mixture of triethylamine and water was used as the switchable‐hydrophilicity solvent. The pH was regulated using carbon dioxide; hence the ratio of the ionized and non‐ionized form of triethylamine could control the optimum conditions. Sodium dodecyl sulfate was utilized as an ion‐pairing agent. The ion‐associate complex formed between the cationic paraquat and sodium dodecyl sulfate was extracted into triethylamine. The separation of the two phases was carried out by the addition of sodium hydroxide, which changed the ionization state of triethylamine. The effects of some important parameters on the extraction recovery were investigated. Under the optimum conditions (500 μL of the extraction solvent, 1 mg sodium dodecyl sulfate, 2.0 mL of 10 mol/L sodium hydroxide, and pH 4), the limit of detection and the limit of quantification were 0.2 and 0.5 μg/L, respectively, with preconcentration factor of 74. The precision (RSD, n  = 10) was  <5%. The recovery of the analyte in environmental and biological samples was in the range of 90.0–92.3%.  相似文献   

4.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

5.
A homogeneous liquid–liquid microextraction alternative, based on the use of switchable hydrophilicity solvents, is presented. The extraction technique makes use of 125 μL of a water‐immiscible solvent (N,N‐dimethylcyclohexylamine) that can be solubilized in the aqueous phase in 1:1 ratio using CO2 as a reagent. After the extraction, phase separation is induced by the addition of sodium hydroxide that produces a change on the ionization state of the amine, and centrifugation was not necessary. The extraction technique has been optimized and characterized using the determination of triazine herbicides by gas chromatography with mass spectrometry in water samples. The presence of metallic ions in environmental waters as interferents is easily avoided by the addition of ethylenediaminetetraacetic acid before the microextraction procedure. The proposed method allows the determination of the target analytes at the low microgram per liter range with good precision (relative standard deviation lower than 12.5%).  相似文献   

6.
Switchable‐hydrophilicity solvent liquid‐liquid microextraction and dispersive liquid‐liquid microextraction were compared for the extraction of piperine from Piper nigrum L. prior to its analysis by using high‐performance liquid chromatography with UV detection. Under optimum conditions, limits of detection and quantitation were found as 0.2–0.6 and 0.7–2.0 μg/mg with the two methods, respectively. Calibration graphs showed good linearity with coefficients of determination (R2) higher than 0.9962 and percentage relative standard deviations lower than 6.8%. Both methods were efficiently used for the extraction of piperine from black and white pepper samples from different origins and percentage relative recoveries ranged between 90.0 and 106.0%. The results showed that switchable‐hydrophilicity solvent liquid‐liquid microextraction is a better alternative to dispersive liquid‐liquid microextraction for the routine analysis of piperine in food samples. A novel scaled‐up dispersive liquid‐liquid microextraction method was also proposed for the isolation of piperine providing a yield of 102.9 ± 4.9% and purity higher than 98.0% as revealed by NMR spectroscopy.  相似文献   

7.
A green and fast analytical method for the determination of l ‐methionine in human plasma is presented in this study. Preconcentration of the analyte was carried out by switchable solvent liquid phase microextraction after ethyl chloroformate derivatization reaction. Instrumental detection of the analyte was performed by means of gas chromatography–mass spectrometry. N,N‐Dimethyl benzylamine was used in the synthesis of switchable solvent. Protonated N,N‐dimethyl benzylamine volume, volume/concentration of sodium hydroxide, and vortex period were meticulously fixed to their optimum values. Besides, ethyl chloroformate, pyridine, and ethanol volumes were optimized in order to get high derivatization yield. After the optimization studies, limit of detection and quantitation values were attained as 3.30 and 11.0 ng/g, respectively, by the developed switchable solvent liquid phase microextraction gas chromatography–mass spectrometry method that corresponding to 76.7‐folds enhancement in detection power of the gas chromatography–mass spectrometry system. Applicability and accuracy of the switchable solvent liquid phase microextraction–gas chromatography–mass spectrometry method were also checked by spiking experiments. Percent recovery results were ranged from 97.8 to 100.5% showing that human plasma samples could be analyzed for its l ‐methionine level by the proposed method.  相似文献   

8.
In this work, a new method based on homogeneous liquid-phase microextraction was developed for the determination of methadone and tramadol. Dipropylamine was used as extraction solvent with switchable hydrophilicity that can be miscible/immiscible upon the addition or removal of CO2 as a reagent. The effects of operational parameters of the extraction such as volume of acceptor phase, volume of donor phase, pH of donor phase, and ionic strength of solution were investigated. Under optimal conditions, the preconcentration factors, the detection limits and the linearity of the method were achieved in the ranges of 135–138, 1.2 and 4–1000 µg L?1, respectively. Finally, the proposed method has been successfully applied to the analysis of methadone and tramadol in urine samples. In urine sample, the preconcentration factors were 118 and 122 for methadone and tramadol, respectively. Additionally, calibration curves were found to be linear in the concentration range of 8–1000 µg L?1 with the r2 values better than 0.998. In addition, limits of detection and quantification were 2.4 and 8 µg L?1, respectively, for both analytes.  相似文献   

9.
A simple in‐line single drop liquid–liquid–liquid microextraction (SD‐LLLME) coupled with CE for the determination of two fluoroquinolones was developed. The method is capable to quantify trace amount of analytes in water samples and to improve the sensitivity of CE detection. For the SD‐LLLME, a thin layer of organic phase was used to separate a drop of 0.1 M NaOH hanging at the inlet of the capillary from the aqueous donor phase. By this way, the analytes were extracted to the acceptor phase through the organic layer based on their acidic/basic dissociation equilibrium. The drop was immersed into the organic phase during 10 min for extraction and then it is directly injected into the capillary for the analysis. Parameters such as type and volume of organic solvent phase, aqueous donor, and acceptor phases and extraction time and temperature were optimized. The enrichment factor was calculated, resulting 40‐fold for enrofloxacin (ENR) and sixfold for ciprofloxacin (CIP). The linear range were 20–400 μg/L for ENR and 60–400 μg/L for CIP. The detection limits were 10.1 μg/L and 55.3 μg/L for ENR and CIP, respectively, and a good reproducibility was obtained (4.4% for ENR and 5.6% for CIP). Two real water samples were analysed applying the new method and the obtained results presented satisfactory recovery percentages (90–100.3%).  相似文献   

10.
A new method for quantification of 12 nitroaromatic compounds including 2,4,6‐trinitrotoluene, its metabolites and 2,4,6‐trinitrophenyl‐N‐methylnitramine with microextraction by packed sorbent followed by gas chromatography and mass spectrometric detection in environmental and biological samples is developed. The microextraction device employs 4 mg of C18 silica sorbent inserted into a microvolume syringe for sample preparation. Several parameters capable of influencing the microextraction procedure, namely, number of extraction cycles, washing solvent, volume of washing solvent, elution solvent, volume of eluting solvent and pH of matrix, were optimized. The developed method produced satisfactory results with excellent values of coefficient of determination (R2 > 0.9804) within the established calibration range. The extraction yields were satisfactory for all analytes (> 89.32%) for aqueous samples and (> 87.45%) for fluidic biological samples. The limits of detection values lie in the range 14–828 pg/mL.  相似文献   

11.
A sol–gel coating technique was applied for the preparation of a solid‐phase microextraction fiber by coating the metal–organic framework UiO‐67 onto a stainless‐steel wire. The prepared fiber was explored for the headspace solid‐phase microextraction of five nitrobenzene compounds from water samples before gas chromatography with mass spectrometric detection. The effects of the extraction temperature, extraction time, sample solution volume, salt addition, and desorption conditions on the extraction efficiency were optimized. Under the optimal conditions, the linearity was observed in the range of 0.015–12.0 μg/L for the compounds in water samples, with the correlation coefficients (r) of 0.9945–0.9987. The limits of detection of the method were 5.0–10.0 ng/L, and the recoveries of the analytes from spiked water samples for the method were in the range of 74.0–102.0%. The precision for the measurements, expressed as the relative standard deviation, was less than 11.9%.  相似文献   

12.
A simple technique for the collection of an extraction solvent lighter than water after dispersive liquid–liquid microextraction combined with high‐performance liquid chromatography with ultraviolet detection was developed for the determination of four paraben preservatives in aqueous samples. After the extraction procedure, low‐density organic solvent together with some little aqueous phase was separated by using a disposable glass Pasteur pipette. Next, the flow of the aqueous phase was stopped by successive dipping the capillary tip of the pipette into anhydrous Na2SO4. The upper organic layer was then removed simply with a microsyringe and injected into the high‐performance liquid chromatography system. Experimental parameters that affect the extraction efficiency were investigated and optimized. Under optimal extraction conditions, the extraction recoveries ranged from 25 to 86%. Good linearity with coefficients with the square of correlation coefficients ranging from 0.9984 to 0.9998 was observed in the concentration range of 0.001–0.5 μg/mL. The relative standard deviations ranged from 4.1 to 9.3% (n = 5) for all compounds. The limits of detection ranged from 0.021 to 0.046 ng/mL. The method was successfully applied for the determination of parabens in tap water and fruit juice samples and good recoveries (61–108%) were achieved for spiked samples.  相似文献   

13.
In this research, a novel homogeneous liquid‐phase microextraction method was successfully developed based on applying octanoic acid as low‐density extraction solvent. The method was applied for extraction and determination of chlorophenols (CPs) as model compounds. Twelve milliliter of the sample solution was poured into a home‐designed glass vial. Sixty microliter of octanoic acid was solved in water sample by adjusting pH and ionic strength. By rapid addition of 75 μL of concentrated HCl (6 M), a cloudy solution was obtained. Phase separation occurred at 5000 rpm for 5 min. After that, 20 μL of the collected phase (approximately 26 μL) was injected into the HPLC‐UV instrument for analysis. The effect of some parameters such as the volume of concentrated HCl (phase separation reagent), ionic strength, extraction time, centrifugation time, and the volume of extracting phase on the extraction efficiency of the CPs were investigated and optimized. The preconcentration factors in a range of 159–218 were obtained under the optimal conditions. The linear range, detection limits (S/N = 3), and precision (n = 3) were 1– 200, 0.3–0.5 μg/L, and 4.6–5.1%, respectively. Tap water, seawater, and river water samples were successfully analyzed for the existence of CPs using the proposed method and satisfactory results were obtained.  相似文献   

14.
A dispersive liquid–liquid microextraction method using a lighter‐than‐water phosphonium‐based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium‐based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl‐(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter‐than‐water phosphonium‐based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples.  相似文献   

15.
This paper described a novel approach for the determination of bisphenol A by dispersive liquid‐phase microextraction with in situ acetylation prior to GC‐MS. In this derivatization/extraction method, 500 μL acetone (disperser solvent) containing 30.0 μL chlorobenzene (extraction solvent) and 30.0 μL acetic anhydride (derivatization reagent) was rapidly injected into 5.00 mL aqueous sample containing bisphenol A and K2CO3 (0.5% w/v). Within a few seconds the analyte was derivatized and extracted at the same time. After centrifugation, 1.0 μL of sedimented phase containing enriched analyte was determined by GC‐MS. Some important parameters, such as type and volume of extraction and disperser solvent, volume of acetic anhydride, derivatization and extraction time, amount of K2CO3, and salt addition were studied and optimized. Under the optimum conditions, the LOD and the LOQ were 0.01, 0.1 μg/L, respectively. The experimental results indicated that there was linearity over the range 0.1–50 μg/L with coefficient of correlation 0.9997, and good reproducibility with RSD 3.8% (n = 5). The proposed method has been applied for the analysis of drinking water samples, and satisfactory results were achieved.  相似文献   

16.
A three‐phase hollow fiber liquid‐phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1‐octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 μL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H3PO4, pH 3.0; organic solvent, 1‐octanol; acceptor solution, 40 μL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05–0.30 mg/L with r2>0.9900 and LODs were in the range of 0.01–0.04 mg/L with RSDs of 1.25–2.32%. Excellent enrichment factors of up to 398‐folds were obtained. It was found that the partition coefficient (Ka/d) values were high for 2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2,4‐dinitrophenol and 2,6‐dinitrophenol and that the individual partition coefficients (Korg/d and Ka/org) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.  相似文献   

17.
An ultrasound‐enhanced in situ solvent formation microextraction has been developed first time and compared with ultrasound‐enhanced ionic‐liquid‐assisted dispersive liquid–liquid microextraction for the HPLC analysis of acaricides in environmental water samples. A ionic liquid ([C8MIM][PF6]) was used as the green extraction solvent through two pathways. The experimental parameters, such as the type and volume of both of the extraction solvent disperser solvent, ultrasonication time, and salt addition, were investigated and optimized. The analytical performance using the optimized conditions proved the feasibility of the developed methods for the quantitation of trace levels of acaricides by obtaining limits of detection that range from 0.54 to 3.68 μg/L. The in situ solvent formation microextraction method possesses more positive characteristics than the ionic‐liquid‐assisted dispersive liquid–liquid microextraction method (except for spirodiclofen determination) when comparing the validation parameters. Both methods were successfully applied to determining acaricides in real water samples.  相似文献   

18.
Vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection was applied to determine Isocarbophos, Parathion‐methyl, Triazophos, Phoxim and Chlorpyrifos‐methyl in water samples. 1‐Bromobutane was used as the extraction solvent, which has a higher density than water and low toxicity. Centrifugation and disperser solvent were not required in this microextraction procedure. The optimum extraction conditions for 15 mL water sample were: pH of the sample solution, 5; volume of the extraction solvent, 80 μL; vortex time, 2 min; salt addition, 0.5 g. Under the optimum conditions, enrichment factors ranging from 196 to 237 and limits of detection below 0.38 μg/L were obtained for the determination of target pesticides in water. Good linearities (r > 0.9992) were obtained within the range of 1–500 μg/L for all the compounds. The relative standard deviations were in the range of 1.62–2.86% and the recoveries of spiked samples ranged from 89.80 to 104.20%. The whole proposed methodology is simple, rapid, sensitive and environmentally friendly for determining traces of organophosphorus pesticides in the water samples.  相似文献   

19.
A sensitive method based on ionic liquid for single‐drop liquid microextraction coupled with HPLC‐UV was developed for the determination of carbonyl compounds in environmental waters using 1‐octyl‐3‐methylimidazolium hexafluorophosphate [C8min][PF6] as extraction solvent and 2,4‐dinitrophenylhydrazine as derivatizing agent. The extraction parameters affecting the enrichment factors such as solvent volume, pH, extraction time and salt concentration were investigated. A homemade funnel form polytetrafluoroethylene sleeve was fixed at the tip of the syringe needle and this allowed the use of 10 μL drop of ionic liquid for direct immersion extraction. Under the optimal conditions, the remarkable enrichment factors up to 150‐fold were obtained depending on the target analytes. The method has been validated when rectilinear relationship was obtained between the concentrations of analytes and peak area in the range of 5–100 ng/mL, the correlation coefficients were from 0.995 to 0.998, and the limit of detection was in the range of 0.04–2.03 ng/mL. The method was applied to monitor the concentration of carbonyl compounds in environmental waters with spiked recovery in the range of 84.2–106.9%.  相似文献   

20.
A novel dispersive liquid‐phase microextraction method without dispersive solvents has been developed for the enrichment and sensitive determination of triclosan and triclocarban in environmental water samples prior to HPLC‐ESI‐MS/MS. This method used only green solvent 1‐hexyl‐3‐methylimidazolium hexafluorophosphate as extraction solvent and overcame the demerits of the use of toxic solvents and the instability of the suspending drop in single drop liquid‐phase microextraction. Important factors that may influence the enrichment efficiencies, such as volume of ionic liquid, pH of solutions, extraction time, centrifuging time and temperature, were systematically investigated and optimized. Under optimum conditions, linearity of the method was observed in the range of 0.1–20 μg/L for triclocarban and 0.5–100 μg/L for triclosan, respectively, with adequate correlation coefficients (R>0.9990). The proposed method has been found to have excellent detection sensitivity with LODs of 0.04 and 0.3 μg/L, and precisions of 4.7 and 6.0% (RSDs, n=5) for triclocarban and triclosan, respectively. This method has been successfully applied to analyze real water samples and satisfactory results were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号