首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 3‐(4‐phenylisothiazol‐5‐yl)‐2H‐chromen‐2‐one ( 6a – l ) derivatives has been efficiently synthesized by straightforward sequential reactions. Tandem Vilsmeier Hack reaction/cyclization/bromination/Suzuki cross‐coupling reactions were successfully applied to the preparation of title compounds in good‐to‐high yields. In the synthetic sequences, 3‐chloro‐3‐(2‐oxo‐2H‐chromen‐3‐yl)acrylaldehydes ( 2 ) were found to react with ammonium thiocyanate to yield the corresponding 3‐(isothiazol‐5‐yl)‐2H‐chromen‐2‐ones ( 3 ). These derivatives were brominated with N‐bromo succinamide to yield the corresponding regioselective 3‐(4‐bromoisothiazol‐5‐yl)‐2H‐chromen‐2‐one ( 4 ). Finally, compound 4 was treated with various phenyl/pyrazole/7H –pyrrolo[2,3‐d]pyrimidinyl boronic acids 5a – l in the presence of K2CO3 and Pd catalyst in dimethylformamide to yield the corresponding title derivatives 6a – l . All the synthesized compounds were characterized by analytical and spectral studies. All the final compounds were screened against different cancer cell lines (A549, PC3, SKOV3, and B16F10), and among these compounds, 6b , 6g , 6h , and 6l displayed moderate cytotoxic activity against the tested cell lines.  相似文献   

2.
Synthesis, spectral analysis, and antibacterial activity of new coumarin derivatives are described in this paper. Twelve new coumarin derivatives were synthesized in moderate to good yields by the react with 4‐methyl‐6‐(prop‐2‐ynyloxy)‐2H‐chromen‐2‐one ( 3a – c ) and ethyl azide ( 4a – l ) and done by the click reaction to obtained 6‐[(l‐ethyl‐lH‐l,2,3‐triazol‐4‐yl)methoxy]‐4‐methyl‐2H‐chromen‐2‐ones ( 5a – l ). The structures of all the newly synthesized molecules were assigned by elemental analysis and spectral data. The synthesized compounds were screened for their antibacterial activities strains using Cup plate method.  相似文献   

3.
A new series of 1‐(5‐(benzylsulfinyl)‐3‐methyl‐1,3,4‐thiadiazol‐2(3H)‐ylidene)‐thiourea/urea derivatives ( 1a – j ) were designed and synthesized. For the first time, (i) a new process was developed for N‐methylation of 1,3,4‐thiadiazole moiety using dimethyl carbonate an environmentally benign reagent in presence of N,N,N′,N‐tetramethylethylenediamine and (ii) the sulfide was selectively oxidized to sulfoxide in higher yield by using chlorine (g) in aqueous acetic acid media under mild reaction condition. The synthesized compounds ( 1a – j ) were investigated for their antimicrobial activities. The tested compounds ( 1a – j ) were exhibited moderate to excellent antibacterial activities against both Gram‐positive and Gram‐negative bacterial strains. The same compounds exhibited good antifungal activities against selected fungal strains. Particularly, the compounds 1b , 1d , 1h , and 1i were proved to be promising leads exhibiting both antibacterial and antifungal activities compared with standard drugs, ciprofloxacin, and fluconazole. The presence of 1,3,4‐thiadiazole moiety has a significant role in the display of antimicrobial activity. In addition, the presence of both sulfinyl and thiourea or urea functionalities has enhanced the activity as per obtained antimicrobial activity data.  相似文献   

4.
A novel synthetic route to 4‐pyridazineacetic acids 10 – 12 has been achieved by the ring‐expansion reaction of N‐cyanomethylated 3‐pyrazoline‐4‐acetic acids 7 – 9 . 1H‐Pyrazole‐4‐acetic acids 1 – 3 were reacted with iodoacetonitrile in the presence of triethylamine in refluxing acetonitrile to give the corresponding C‐cyanomethylated 1H‐pyrazole‐4‐acetic acids 4 – 6 as major products together with N‐cyanomethylated 3‐pyrazoline‐4‐acetic acids 7 and 8 as minor products. On the other hand, reactions of 1 and 3 with chloroacetonitrile in the presence of triethylamine in refluxing chloroform afforded the corresponding N‐cyanomethylated 3‐pyrazoline‐4‐acetic acids 7 and 9 as major products. Thermal treatment of 7 – 9 with sodium hydride in N,N‐dimethylformamide caused ring expansion to yield the corresponding 4‐pyridazineacetic acids 10 – 12 .  相似文献   

5.
Condensation of 3,4‐dimethoxybenzeneethanamine ( 3d ) and various benzeneacetic acids, i.e., 4a – e , via a practical and efficient one‐pot Bischler–Napieralski reaction, followed by NaBH4 reduction, produced a series of 1‐benzyl‐1,2,3,4‐tetrahydroisoquinolines, i.e., 5a – e , in satisfactory yields (Scheme 3). Oxidative coupling of the N‐acyl and N‐methyl derivatives 6a – e of the latter with hypervalent iodine ([IPh(CF3COO)2]) yielded products with two different skeletons (Scheme 4). The major products from N‐acyl derivatives 6a – c were (±)‐N‐acylneospirodienones 2a – c , while the minor was the 3,4‐dihydroisoquinoline 7 . (±)‐Glaucine ( 1 ), however, was the major product starting from N‐methyl derivative 6e . Possible reaction mechanisms for the formation of these two types of skeleton are proposed (Scheme 5).  相似文献   

6.
A study on the synthesis of the novel N‐(cyclic phosphonate)‐substituted phosphoramidothioates, i.e., O,O‐diethyl N‐[(trans‐4‐aryl‐5,5‐dimethyl‐2‐oxido‐2λ5‐1,3,2‐dioxaphosphorinan‐2‐yl)methyl]phosphoramidothioates 4a – l , from O,O‐diethyl phosphoramidothioate ( 1 ), a benzaldehyde or ketone 2 , and a 1,3,2‐dioxaphosphorinane 2‐oxide 3 was carried out (Scheme 1 and Table 1). Some of their stereoisomers were isolated, and their structure was established. The presence of acetyl chloride was essential for this reaction and accelerated the process of intramolecular dehydration of intermediate 5 forming the corresponding Schiff base 7 (Scheme 2).  相似文献   

7.
Quite unlike the reported facile ene reactions on the periphery of many related heterocyclic systems, similarly disposed moieties on the periphery of the chromen‐4‐one (=4H‐1‐benzopyran‐4‐one) system fail to undergo an ene reaction and display a rather unusual preference for an overall [1,5] shift of the allylic C‐atom. Thus, heating xylene solutions of 2‐(N‐allylanilino)‐, 2‐(N‐crotylanilino)‐, and 2‐(N‐cinnamylamino)‐substituted (E)‐(oxochromenyl)propenoates 9a – c and 2‐[allyl(benzyl)amino]‐, 2‐[benzyl(crotyl)amino]‐, and 2‐[benzyl(cinnamyl)amino]‐substituted (E)‐(oxochromenyl)propenoates 16a – c in a sealed tube at 220–230° leads to a [1,5] shift of the allylic moieties (allyl, crotyl, cinnamyl), which is followed by intramolecular cyclization involving the N‐atom and the ester function, to give the 3‐allyl‐3‐crotyl‐, and 3‐cinnamyl‐substituted‐1‐phenyl‐ or 1‐benzyl‐2H‐[1]benzopyrano[2,3‐b]pyridine‐2,5(1H)‐diones 10a – c and 17a – c . The anticipated carbonyl–ene reaction in the 2‐(N‐allylanilino)‐, 2‐(N‐crotylanilino)‐, 2‐(N‐cinnamylanilino)‐, 2‐[allyl(benzyl)amino]‐, 2‐[benzyl(crotyl)amino]‐, and 2‐[benzyl(cinnamyl)amino]‐substituted 4‐oxochromene‐3‐carboxaldehydes 8a – c and 15a – c is also not observed, and these molecules remain untransformed under identical conditions. No [1,5] shifts of benzyl, phenyl, or methyl groups are observed, even in the absence of allylic moieties, though facile [1,5]‐H shift occurs in 2‐(benzylamino)‐ and 2‐(phenylamino)‐substituted (E)‐(oxochromenyl)propenoates 23a , b , which is followed by a similar intramolecular cyclization leading to the 2H‐[1]benzopyrano[2,3‐b]pyridine‐2,5(1H)‐diones 24a , b .  相似文献   

8.
金属铟参与醛衍生的N-酰基腙 1a-1q,4a-4g与3-溴-3,3-二氟丙烯 2 的反应,分别高效得到α, α-二氟高烯丙基肼 3a-3q,5a-5g。该反应条件温和,操作简便。硝基,酚羟基,苄氧基,α, β-不饱和醛的碳-碳双键等官能团对该反应具有良好的官能团兼容性。通过用锌粉代替铟粉, 酮衍生的N-酰基腙 6a-6d 也能发生偕二氟烯丙基化反应,以中等产率得到α, α-二氟高烯丙基肼 7a-7d。裂解肼3a的 N-N键顺利得到偕二氟高烯丙基胺 8,化合物 8 经丙烯酰化,随后进行RCM关环反应,可以方便的转化为偕二氟-γ-取代α, β-不饱和内酰胺 11。  相似文献   

9.
The synthesis of a new series of 4‐aryl‐3‐chloro‐2‐oxo‐N‐[3‐(10H‐phenothiazin‐10‐yl)propyl]azetidine‐1‐carboxamides, 4a – 4m , is described. Phenothiazine on reaction with Cl(CH2)3Br at room temperature gave 10‐(3‐chloropropyl)‐10H‐phenothiazine ( 1 ), and the latter reacted with urea to yield 1‐[3‐(10H‐phenothiazin‐10‐yl)propyl]urea ( 2 ). Further reaction of 2 with several substituted aromatic aldehydes led to N‐(arylmethylidene)‐N′‐[3‐(phenothiazin‐10‐yl)propyl]ureas 3a – 3m , which, on treatment with ClCH2COCl in the presence of Et3N, furnished the desired racemic trans‐2‐oxoazetidin‐1‐carboxamide derivatives 4a – 4m . The structures of all new compounds were confirmed by IR, and 1H‐ and 13C‐NMR spectroscopy, FAB mass spectrometry, and chemical methods.  相似文献   

10.
We have developed and validated a high‐performance liquid chromatography method that uses monolithic silica disk‐packed spin columns and a monolithic silica column for the simultaneous determination of NG‐monomethyl‐l ‐arginine, NG,NG‐dimethyl‐l ‐arginine, and NG,NG′‐dimethyl‐l ‐arginine in human plasma. For solid‐phase extraction, our method employs a centrifugal spin column packed with monolithic silica bonded to propyl benzenesulfonic acid as a cation exchanger. After pretreatment, the methylated arginines are converted to fluorescent derivatives with 4‐fluoro‐7‐nitro‐2,1,3‐benzoxadiazole, and then the derivatives are separated on a monolithic silica column. l ‐Arginine concentration was also determined in diluted samples. Standard calibration curves revealed that the assay was linear in the concentration range 0.2–1.0 μM for methylated arginines and 40–200 μM for l ‐arginine. Linear regression of the calibration curve yielded equations with correlation coefficients of 0.999 (r2). The sensitivity was satisfactory, with a limit of detection ranging from 3.75 to 9.0 fmol for all four compounds. The RSDs were 4.3–4.8% (intraday) and 3.0–6.8% (interday). When this method was applied to samples from six healthy donors, the detected concentrations of NG‐monomethyl‐l ‐arginine, NG,NG‐dimethyl‐l ‐arginine, NG,NG′‐dimethyl‐l ‐arginine and l ‐arginine were 0.05 ± 0.01, 0.41 ± 0.07, 0.59 ± 0.11, and 83.8 ± 30.43 μM (n = 6), respectively.  相似文献   

11.
A general method for the synthesis of so far unknown nonsymmetrically substituted N‐aryl‐N′‐aryl′‐4,4′‐bipyridinium salts is presented (Scheme 1). The common intermediate in all procedures is N‐(2,4‐dinitrophenyl)‐4,4′‐bipyridinium hexafluorophosphate ( 1 ⋅ ). For the synthesis of nonsymmetric arylviologens, 1 ⋅ was arenamine‐exchanged by the Zincke reaction, and then activated at the second bipyridine N‐atom with 2,4‐dinitrophenyl 4‐methylbenzenesulfonate. The detailed preparation of the six N‐aryl‐N′‐aryl′‐viologens 21 – 26 is discussed (Scheme 2). The generality of the procedure is further exemplified by the synthesis of two nonsymmetrically substituted N‐aryl‐N′‐benzyl‐ (see 11 and 12 ), and seven N‐aryl‐N′‐alkyl‐4,4′‐bipyridinium salts (see 28 – 34 ) including substituents with metal oxide anchoring and redox tuning properties. The need for these compounds and their usage as electrochromic materials, in dendrimer synthesis, in molecular electronics, and in tunable‐redox mediators is briefly discussed. The latter adjustable property is demonstrated by the reduction potential measured by cyclic voltammetry on selected compounds (Table).  相似文献   

12.
The title compounds were prepared from valine‐derived N‐acylated oxazolidin‐2‐ones, 1 – 3, 7, 9 , by highly diastereoselective (≥ 90%) Mannich reaction (→ 4 – 6 ; Scheme 1) or aldol addition (→ 8 and 10 ; Scheme 2) of the corresponding Ti‐ or B‐enolates as the key step. The superiority of the ‘5,5‐diphenyl‐4‐isopropyl‐1,3‐oxazolidin‐2‐one’ (DIOZ) was demonstrated, once more, in these reactions and in subsequent transformations leading to various t‐Bu‐, Boc‐, Fmoc‐, and Cbz‐protected β2‐homoamino acid derivatives 11 – 23 (Schemes 3–6). The use of ω‐bromo‐acyl‐oxazolidinones 1 – 3 as starting materials turned out to open access to a variety of enantiomerically pure trifunctional and cyclic carboxylic‐acid derivatives.  相似文献   

13.
A convenient and efficient method for a one‐pot conversion of N‐alkylisatins to N‐alkylisatin O‐alkyloximes 7a – 7n as potential chemotherapeutic agents is described (Scheme) (isatin=1H‐indole‐2,3‐dione). In this method, the microwave‐assisted three‐component reaction of N‐alkylisatins 8 , hydroxylamine hydrochloride, and diverse alkyl halides in the presence of K2CO3 and Bu4NBr furnishes the corresponding N‐alkylisatin O‐alkyloximes under solvent‐free condition in short times (2–10 min) and good to excellent yields (62–83%). The O‐alkylation of in situ generated isatin oximes with alkyl halides was achieved regioselectively, and (Z)‐O‐alkyloximes were produced dominantly. PM3 Semi‐empirical quantum‐mechanic calculations were performed to rationalize the evidences, and the calculations indicated a lower heat of formation for the (Z)‐O‐alkyloximes.  相似文献   

14.
The chemoselective reactions of 2‐(5‐mercapto‐4‐phenyl‐4H‐[1,2,4]triazol‐3‐ylmethyl)‐6‐p‐tolyl‐4,5‐dihydro‐2H‐pyridazin‐3‐one ( 3 ) with different electrophiles were evaluated. Triazole 3 reacted with alkyl halides in the presence of triethylamine in alcohol to give the corresponding S‐substituted derivatives. On the basis of S‐chemoselective reactions of triazole 3 , a series of amino acid 10a – d and dipeptide derivatives 12a – d were prepared via azide coupling of the corresponding hydrazides 9 and 15 with amino acid ester hydrochlorides, respectively. N‐Substituted triazoles 6a – c or 7a – d attached to pyridazin‐3‐one moiety were successfully formed by the reaction of 3 with activated acrylic acid derivatives or with amines. Antibacterial activities of the synthesized derivatives were investigated through correlation with Escherichia coli FabH inhibitory activities using molecular modeling docking software. The antimicrobial activity of synthesized compounds was evaluated, showing best inhibition zone for N‐substituted carboxylic acid 5a and N‐substituted nitrile 5c parallel to the molecular modeling studies.  相似文献   

15.
A series of 3‐substituted 2‐thioxo‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 4a – e were synthesized from the reaction of 3‐aminonaphthalene‐2‐carboxylic acid 1 with isothiocyanate derivatives 2a – e . The alkylation of 4a – e with alkyl halides gave 3‐substituted 2‐alkylsulfanyl‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 5a – o . S‐Glycosylation was carried out via the reaction of 4a – e with glycopyranosyl bromides 7a and 7b under anhydrous alkaline conditions. The structure of the compounds was established as S‐nucleoside and not N‐nucleoside. Conformational analysis has been studied by homonuclear and heteronuclear two‐dimensional NMR methods (2D DFQ‐COSY, heteronuclear multiple quantum coherence, and heteronuclear multiple bond correlation). The S site of alkylation and glycosylation was determined from the 1H and 13C heteronuclear multiple quantum coherence experiments.  相似文献   

16.
In this study, we report the synthesis a series of novel 2‐[N‐(1H‐tetrazol‐5‐yl)‐6,14‐endo‐etheno‐6,7,8,14‐tetrahydrothebaine‐7α‐yl]‐5‐phenyl‐1,3,4‐oxadiazole derivatives ( 7a – e ) which have potential opioid antagonist and agonist. The substitution reaction of 6,14‐endo‐ethenotetrahydrothebaine‐7α‐carbohydrazide with corresponding benzoyl chlorides gave diacylhydrazine compounds 4a – e in good yields. The treatment of compounds 4a – e with POCl3 caused the conversion of side‐chain of compounds 5a – e into 1,3,4‐oxadiazole ring at C(7) position; thus, compounds 5a – e were obtained. Subsequently, cyanamides ( 6a – e ) were prepared from compounds 5a – e and then compounds 7a – e were synthesized by the azidation of 6a – e with NaN3. The structures of the compounds were established on the basis of their IR, 1H NMR, 13C APT, 2D‐NMR (COSY, NOESY, HMQC, HMBC) and high‐resolution mass spectral data.  相似文献   

17.
The syntheses of N7‐glycosylated 9‐deazaguanine 1a as well as of its 9‐bromo and 9‐iodo derivatives 1b , c are described. The regioselective 9‐halogenation with N‐bromosuccinimide (NBS) and N‐iodosuccinimide (NIS) was accomplished at the protected nucleobase 4a (2‐{[(dimethylamino)methylidene]amino}‐3,5‐dihydro‐3‐[(pivaloyloxy)methyl]‐4H‐pyrrolo[3,2‐d]pyrimidin‐4‐one). Nucleobase‐anion glycosylation of 4a – c with 2‐deoxy‐3,5‐di‐O‐(p‐toluoyl)‐α‐D ‐erythro‐pentofuranosyl chloride ( 5 ) furnished the fully protected intermediates 6a – c (Scheme 2). They were deprotected with 0.01M NaOMe yielding the sugar‐deprotected derivatives 8a – c (Scheme 3). At higher concentrations (0.1M NaOMe), also the pivaloyloxymethyl group was removed to give 7a – c , while conc. aq. NH3 solution furnished the nucleosides 1a – c . In D2O, the sugar conformation was always biased towards S (67–61%).  相似文献   

18.
A series of compounds, viz. 2‐(3‐(4‐aryl)‐1‐isonicotinoyl‐4,5‐dihydro‐1H‐pyrazol‐4‐yl)‐3‐phenylthiazolidin‐4‐one 4 ( a – n ), have been synthesized by reaction of 3 ( a – n ) with thioglycolic acid in the presence of zinc chloride. Compounds 3 ( a – n ) have been synthesized by amination of formylated pyrazoles 2 ( A – B ), which were synthesized by formylation of 1 ( A – B ) by Vilsmeier–Haack reagent (POCl3/DMF). Compounds 1 ( A – B ) were synthesized by condensation of hydrazide and substituted acetophenones under conventional method and microwave irradiation method. These compounds were identified on the basis of melting point range, Rf values, infrared, 1H NMR, and mass spectral analysis. These compounds were evaluated for their in vitro antimicrobial activity, and their minimum inhibitory concentration was determined. Among them, compound 4b and compound 4l possess appreciable antimicrobial and antifungal activities. Antibacterial activity results showed that compounds containing electron‐withdrawing groups were more active than compounds containing electron‐releasing groups.  相似文献   

19.
The novel 4‐amino‐ or 4‐aryl‐substituted 2,4‐dihydro‐5‐[(4‐trifluoromethyl)phenyl]‐3H‐1,2,4‐triazol‐3‐ones 3a – 3g were synthesized by reaction of N‐(ethoxycarbonyl)‐4‐(trifluoromethyl)benzenehydrazonic acid ethyl ester ( 2 ) and primary amines or hydrazine by microwave irradiation. Compounds 3a – 3g were potentiometrically titrated with tetrabutylammonium hydroxide (Bu4NOH) in four nonaqueous solvents, i.e., iPrOH, tBuOH, MeCN, and N,N‐dimethylformamide (DMF). Also half‐neutralization potential values and the corresponding pKa values were determined in all cases.  相似文献   

20.
A series of N‐(2‐benzimidazolyquinolin‐8‐yl)benzamidate half‐titanocene chlorides, Cp′TiLCl ( C1 – C8 : Cp′ = C5H5, MeC5H4, or C5Me5; L = N‐(benzimidazolyquinolin‐8‐yl)benzamides)), was synthesized by the KCl elimination reaction of half‐titanocene trichlorides with the correspondent potassium N‐(2‐benzimidazolyquinolin‐8‐yl)benzamide. These half‐titanocene complexes were fully characterized by elemental and NMR analyses, and the molecular structures of complexes C2 and C8 were determined by the single‐crystal X‐ray diffraction. The high stability of the pentamethylcyclopentadienyl complex ( C8 ) was evident by no decomposing nature of its solution in air for one week. The oxo‐bridged dimeric complex ( C9 ) was isolated from the solution of the corresponding cyclopentadienyl complex ( C3 ) solution in air. Complexes C1 – C8 exhibited good to high catalytic activities toward ethylene polymerization and ethylene/α‐olefin copolymerization in the presence of methylaluminoxane (MAO) cocatalyst. In the typical catalytic system of C1/ MAO, the polymerization productivities were enhanced with either elevating reaction temperature or increasing the ratio of MAO to titanium precursor. In general, it was observed that higher the catalytic activity of the catalytic system lower the molecular weight of polyethylene. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3154–3169, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号