首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, a rapid and sensitive thin‐layer chromatography combined with surface‐enhanced Raman spectroscopy method was established for rapid detection of benzidine and 4‐aminobiphenyl in migration from food contact materials based on Au nanoparticle doped metal‐organic framework. Benzidine and 4‐aminobiphenyl were firstly separated by thin‐layer chromatography to solve the limitation of their overlapping Raman peaks. Then the target molecules were monitored by adding AuNPs/MIL‐101(Cr) on the sample spots. Under the optimum conditions, the concentration of benzidine and 4‐aminobiphenyl can be quantitatively measured in the range of 2.0‐20.0 and1.0‐15.0 μg/L, respectively with good linear relationship, and the limits of detection were 0.21 and 0.23 μg/L, respectively. Furthermore, the developed method was applied to analyze benzidine and 4‐aminobiphenyl in migration of different food contact materials. The recoveries of benzidine and 4‐aminobiphenyl for migration of food contact materials, including paper cups, polypropylene food containers, and polyethylene glycol terephthalate bottles, were 80.6‐116.0 and 80.7‐118% with relative standard deviations of 1.1‐9.1 and 3.1‐9.9%, respectively. Surface‐enhanced Raman scattering detection was performed conveniently in the on‐plate mode without additional elution process. The method shows great potential in rapid monitoring of hazardous substances with overlapping characteristic Raman peaks in food contact materials.  相似文献   

2.
为实现鸭肉中环丙沙星(CIP)残留的快速检测,建立了一种鸭肉中CIP残留的表面增强拉曼光谱(SERS)快速检测方法。进行了增强基底的紫外-可见吸收光谱分析和鸭肉中CIP残留检测的SERS可行性分析。通过单因素实验,确定了金胶加入量、含CIP的鸭肉提取液加入量、氯化钠溶液加入量和吸附时间。在最佳实验条件下,建立了鸭肉中CIP残留的SERS检测的标准工作曲线,决定系数(R2)为0.987 9,预测样本中CIP的平均回收率为97.0%~111.7%。实验结果表明,鸭肉中CIP残留的SERS快速检测方法是可行的。  相似文献   

3.
A fiber‐in‐tube solid‐phase microextraction device based on a gold‐functionalized stainless‐steel wire and tube was developed and characterized by scanning electron microscopy and energy dispersive X‐ray spectroscopy. In combination with high‐performance liquid chromatography, it was evaluated using six polycyclic aromatic hydrocarbons as model analytes. Important parameters including sampling rate, sample volume, organic solvent content and desorption time were investigated. Under optimized conditions, an online analysis method was established. The linearity was in the range of 0.15–50 μg/L with correlation coefficients ranging from 0.9989 to 0.9999, and limits of detection ranged from 0.05 to 0.1 μg/L. The method was applied to determine model analytes in mosquito‐repellent incense ash and river water samples, with recoveries in the range of 85–120%.  相似文献   

4.
Due to the lack of chromophores in many macrolides, analytical methods based on mass spectrometry and electrochemical detection coupled to liquid chromatography have been suggested to be suitable for the quantification of macrolides in complex matrices. In this study, a simple and sensitive analytical method was established for the simultaneous measurement of nine macrolides in human urine by combining a sub‐3 μm superficially porous particle packed column with charged aerosol detection. After thorough investigation of various sample preparation methods, including two liquid–liquid extraction methods and four solid‐phase extraction methods, HLB solid‐phase extraction was selected and further optimized. Absolute recovery of the optimized sample preparation method ranged from 99.5–110.2%, indicating its very high extraction/clean‐up efficiency. For chromatography, parameters influencing macrolide separation were systematically optimized, and the resulting conditions allowed baseline separation of nine macrolides within 24 min using a very simple mobile phase. The established method was validated for linearity, limit of detection, limit of quantification, absolute recovery, and precision. Based on its limit of detection (0.025–0.100 μg/mL), the method had similar or greater sensitivity than most methods based on electrochemical detection. It was found that the current method was appropriate for application to real human urine samples after drug administration.  相似文献   

5.
A sensitive microextraction method based on a new poly(methacrylic acid‐ethylene glycol dimethacrylate‐N‐vinylcarbazole) monolithic capillary column, coupled with gas chromatography and electron capture detection, was established for the determination of three benzodiazepines (estazolam, alprazolam, and triazolam) in urine and beer samples. Owing to the abundant π electrons and polar surface of N‐vinylcarbazole, N‐vinylcarbazole‐incorporated monolith showed a higher extraction performance than neat poly(methacrylic acid‐ethylene glycol dimethacrylate) because of the enhanced π–π stacking interactions derived from the π‐electron‐rich benzene groups from N‐vinylcarbazole. The monolith exhibited a homogeneous and continuous structure, good permeability, and a long lifetime. Factors affecting the extraction such as solution pH, salt concentration, sample volume, desorption solvent, and desorption volume were investigated. Under the optimized conditions, limits of detection of 0.011–0.026 ng/mL were obtained. The one‐column and column‐to‐column precision values were ≤7.2 and ≤9.8%, respectively. The real samples were first diluted with deionized water and then treated by the monolith microextraction before gas chromatography analysis. The recoveries were 81.4–93.3 and 83.3–94.7% for the spiked samples, with relative standard deviations of 4.1–8.1 and 3.8–8.5%, respectively. This method provides an accurate, simple, and sensitive detection platform for drug analysis.  相似文献   

6.
In this work, an easy, effective, and sensitive method based on graphene oxide@silica@magnetite composites as adsorbent of magnetic solid‐phase extraction combined with liquid chromatography and tandem mass spectrometry, was established and validated for the trace analysis of cytokinins in different plants. The prepared magnetic composite was characterized by infrared spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller analysis, and magnetic hysteresis. Under the optimized conditions, good linearities in the range of 0.5–100 ng/mL were obtained with the corresponding linear correlation coefficient >0.9989 for the investigated four cytokinins, and good sensitivity levels were achieved with low detection limits ranging from 93 to 120 pg/mL. The established magnetic solid‐phase extraction with liquid chromatography and tandem mass spectrometry method has been validated in the separation and analysis of four cytokinins in plant samples with good recoveries between 78.9 and 97.3% for four cytokinins with the relative standard deviations lower than 13.5%.  相似文献   

7.
An adsorbent of carbon dot@poly(glycidyl methacrylate)@Fe3O4 nanoparticles has been developed for the microwave‐assisted magnetic solid‐phase extraction of polycyclic aromatic hydrocarbons in environmental aqueous samples prior to high‐performance liquid chromatography with UV/visible spectroscopy detection. Poly(glycidyl methacrylate) was synthesized by atom transfer radical polymerization. The chain length and amount of carbon dots attached on them can be easily controlled through changing polymerization conditions, which contributes to tunable extraction performance. The successful fabrication of the nano‐adsorbent was confirmed by transmission electronic microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and vibrating sample magnetometry. The extraction performance of the adsorbent was evaluated by using polycyclic aromatic hydrocarbons as model analytes. The key factors influencing the extraction, such as microwave power, adsorption time, desorption time and desorption solvents were investigated in detail. Under the optimal conditions, the microwave‐assisted method afforded magnetic solid‐phase extraction with short extraction time, wide dynamic linear range (0.02–200 μg/L), good linearity (R2 ≥ 98.57%) and low detection limits (20–90 ng/L) for model analytes. The adsorbent was successfully applied for analyzing polycyclic aromatic hydrocarbons in environmental aqueous samples and the recoveries were in the range of 86.0–124.2%. Thus, the proposed method is a promising candidate for fast and reliable preconcentration of trace polycyclic aromatic hydrocarbons in real water samples.  相似文献   

8.
Graphene oxide was bonded onto a silver‐coated stainless‐steel wire using an ionic liquid as the crosslinking agent by a layer‐by‐layer strategy. The novel solid‐phase microextraction fiber was characterized by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and Raman microscopy. A multilayer graphene oxide layer was closely coated onto the supporting substrate. The thickness of the coating was about 4 μm. Coupled with gas chromatography, the fiber was evaluated using five polycyclic aromatic hydrocarbons (fluorene, anthracene, fluoranthene, 1,2‐benzophenanthrene, and benzo(a)pyrene) as model analytes in direct‐immersion mode. The main conditions (extraction time, extraction temperature, ionic strength, and desorption time) were optimized by a factor‐by‐factor optimization. The as‐established method exhibited a wide linearity range (0.5–200 μg/L) and low limits of determination (0.05–0.10 μg/L). It was applied to analyze environmental water samples of rain and river water. Three kinds of the model analytes were quantified and the recoveries of samples spiked at 10 μg/L were in the range of 92.3–120 and 93.8–115%, respectively. The obtained results indicated the fiber was efficient for solid‐phase microextraction analysis.  相似文献   

9.
As a novel solid‐phase extraction material, zinc sulfide nanosheets were prepared by a simple method and were used to extract flavonoids. We used scanning electron microscopy to show its nanosheet morphology and energy dispersive X‐ray spectroscopy and powder X‐ray diffraction to confirm its chemical and phase compositions. Coupled to a high‐performance liquid chromatography, the zinc sulfide nanosheets were packed into a microcolumn and were used to extract four model flavonoids to examine their extraction ability. The parameters of sample loading and elution were investigated. Under optimized conditions, the analytical method for flavonoids was established. For the method, wide linearities from 1 to 250 μg/L and low limits of detection from 0.25 to 0.5 μg/L were obtained. The relative standard deviations for single column repeatability and column to column reproducibility were less than 7.7 and 10.4%, respectively. The established method was also used to analyze two real samples and the recoveries from 88.7 to 98.2% further proved the reliability of the method. Moreover, the zinc sulfide nanosheets have good stability and that in one column can be reused for more than 50 times. This work proves that the prepared zinc sulfide nanosheets are a good candidate as the flavonoids sorbent.  相似文献   

10.
4‐aminothiophenol‐modified gold nanoparticles (PATP‐AuNPs) were used as colorimetric and Surface Enhanced Raman Scattering (SERS) probes for the sensitive detection of Escherichia coliDH5α, as a model for Gram‐negative bacteria. The nano‐probes were easy to prepare through Au‐S bonding. Under optimized conditions, the PATP‐AuNPs surface with positive charge can bind with negatively charged E.coliDH5α via electrostatic adhesion, resulting in a quick color change from red to blue, and also a dramatic SERS signal enhancement from thousands of AuNPs aggregated on the surface of bacteria, which was utilized for both colorimetric and SERS detection of E.coliDH5α. For colorimetric analysis, it is the first time that the classical partial least square (PLS) regression was utilized to deal with the relationship between adsorption and E.coliDH5α concentrations. Excellent linear relationship was observed from 1.1 x 107 to 1.3 x 108 cfu mL‐1 with the average relative error (ARE) of 5.430, which was more accurate than the traditional extinction ration method. When coupled with confocal Raman microscope, this PATP‐AuNPs probes could be used to detection SERS signals produced from even one single bacterium. This bioassay is rapid, less expensive and convenient for bacteria detection and analysis. Therefore, PATP‐AuNPs system as a novel, versatile, on‐site and real‐time Gram‐negative bacteria sensor, would have a wide range of practical applications.  相似文献   

11.
Graphene oxide based molecularly imprinted polymers modified with β‐cyclodextrin were prepared as solid‐phase extraction column sorbents for specific recognition and sensitive detection of di(2‐ethylhexyl) phthalate in water samples. The morphology and composition of synthesized sorbents were characterized by scanning electron microscopy, thermo‐gravimetric analysis, Raman spectroscopy, and Fourier‐transform infrared spectroscopy. The conditions affecting the performance of extraction procedures such as desorption solvent types and volume, sample pH and volume were investigated. The loading capacity (8.2 μg/mg) of the prepared sorbents increased eight times after modification with β‐cyclodextrin. The developed extraction procedures coupled to high‐performance liquid chromatography exhibited good linearity (0.2–500 μg/L), low limit of detection (0.052 μg/L), and good precision (relative standard deviation?5.7%) under optimized conditions. The developed solid‐phase extraction technique with prepared sorbents has been successfully applied in extracting trace di(2‐ethylhexyl) phthalate from real natural waters with high efficiency, good selectivity, and desirable recoveries.  相似文献   

12.
Hyperbranched polytriazine functionalized with humic acid was prepared and developed as new sorbents for dispersive solid‐phase extraction of three acaricides (clofentezine, fenpyroximate, and pyridaben) in tea samples combined with high‐performance liquid chromatography detection. The sorbents were characterized by scanning electron microscopy, energy dispersive spectroscopy, Zeta‐potential, and Fourier transform infrared spectroscopy. The extraction parameters (extraction time, ionic strength, desorption conditions) were optimized. The adsorption mechanism was evaluated utilizing Fourier transform infrared spectra. Under optimum conditions, satisfactory analytical performances were achieved, which included high precision (1.33–9.62%), low limits of detection (0.19–3.54 µg/L), and wide linear range (2.5–500 µg/L) for the analysis of the acaricides. Moreover, the proposed method proved highly effective for the determination of acaricides in tea samples, with the relative recoveries in the range of 65.20–108.13% and relative standard deviations < 9.87%. The method has great application potential for the detection of acaricides in tea samples.  相似文献   

13.
In this study, a new stir cake sorptive extraction using a boron‐rich monolith as the adsorbent was prepared by the in situ copolymerization of vinylboronic anhydride pyridine complex and divinylbenzene. The effect of preparation parameters, including the ratio of vinylboronic anhydride pyridine complex and divinylbenzene, monomer mixture, and porogen solvent, on extraction performance was investigated thoroughly. The physicochemical properties of the adsorbent were characterized by infrared spectroscopy, scanning electron microscopy, and mercury intrusion porosimetry. Several conditions affecting the extraction efficiency were investigated in detail. Under the optimized conditions, a convenient and sensitive method for the determination of trace fluoroquinolones residues in water and milk samples was established by coupling stir cake sorptive extraction with high‐performance liquid chromatography and diode array detection. The limits of detection for the target compounds were 0.10–0.26 and 0.11–0.22 μg/L for water and milk samples, respectively. In addition, the developed method showed good linearity, repeatability, and precision. Finally, the proposed method was successfully applied for the detection of trace fluoroquinolones residues in environmental water and milk samples. Satisfactory recoveries were obtained for the determination of fluoroquinolones in spiking samples that ranged from 68.8 to 120%, with relative standard deviations below 10% in all cases.  相似文献   

14.
Preconcentration of trace amounts of diazinon by carbon mesoporous CMK‐3 in water and biological samples and measurement by high‐performance liquid chromatography were investigated. CMK‐3 was prepared using hexagonal SBA‐15 as the template. The synthesized materials were characterized by X‐Ray diffraction (XRD), Fourier transform infrared spectroscopy, Brunaur–Emmet–Teller, transmission electron microscopy and Boehm titration method. The preconcentration procedure was optimized using a multivariate optimization approach following a two‐stage process. The effect of analytical parameters including the amount of the CMK‐3 as an adsorbent, pH, type and volume of eluent and flow rate of eluent and sample were studied by a screening project, then the effective parameters were optimized by response surface methodology based on central composite design. The average extraction efficiency of diazinon under optimal conditions (CMK‐3 dosage = 25 mg, sample flow rate = 2.5 mL min−1, eluent flow rate = 1.25 mL min−1, volume of methanol as an eluent =3.5 mL and initial pH = 6) was 97.11%, which agrees well with the predicted response value (97.93%). The linearity of the method was in the range of 0.5–100 μg L−1 with a correlation coefficient of 0.997. Enrichment factor, limit of detection and limit of quantification were 285.7, 0.09 and 0.23 μg L−1, respectively. The relative standard deviation (RSD) under optimum conditions was 2.21% (n = 5). The proposed method was applied to determine diazinon in real water and biological samples. Recovery of diazinon from real samples was between 95.80 and 104.94% with an RSD of 0.19–4.65%. Thus, this method is suitable for the preconcentration and determination of diazinon in real water and biological samples.  相似文献   

15.
A fast gas chromatography/mass spectrometry method was developed and validated for the analysis of the potential endocrine disrupters octinoxate and oxybenzone in swimming pool water samples based on the solvent‐free solid‐phase microextraction technique. The low‐pressure gas chromatography/mass spectrometry method used for the fast identification of UV filter substances was compared to a conventional method in terms of sensitivity and speed. The fast method proposed resulted in 2 min runs, leading to an eightfold decrease in the total analysis time and a sevenfold improvement in detection limits. The main parameters affecting the solid‐phase microextraction process were also studied in detail and the optimized conditions were as follows: fiber coating, polyacrylate; extraction mode, direct immersion; extraction temperature, 25°C; sample volume, 5 mL; extraction time 45 min; pH 6.5. Under the optimized conditions, a linear response was obtained in the concentration range of 0.5–25 μg/L with correlation coefficients in the range 0.990–0.999. The limits of detection were 0.17–0.29 μg/L, and the recoveries were 80–83%. Combined method uncertainty was assessed and found to be less than 7% for both analytes for concentrations equal to or higher than 5 μg/L. Pool water samples were analyzed to demonstrate the applicability of the proposed method. Neither octinoxate nor oxybenzone were detected in the swimming pool water samples at concentrations above the respective limits of detection.  相似文献   

16.
《Electroanalysis》2017,29(2):345-351
A glassy carbon electrode modified with reduced graphene oxide and platinum nanocomposite film was developed simply by electrochemical method for the sensitive and selective detection of nitrite in water. The electrochemical reduction of graphene oxide (GO) efficiently eliminates oxygen‐containing functional groups. Pt nanoparticles were electrochemically and homogeneously deposited on the ErGO surface. Field emission scanning electron microscopy (FE‐SEM), Raman spectroscopy, attenuated total reflectance‐fourier transform infrared spectroscopy (ATR‐FTIR), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) were used to examine the surface morphology and electrocatalytic properties of the Pt‐ErGO nanocomposite film‐modified electrode surface. The fabricated nitrite sensor showed good electrochemical performance with two linear ranges; one from 5 to 100 µM (R2=0.9995) and the other from 100 to 1000 µM (R2=0.9972) and a detection limit of 0.22 µM. The proposed sensor was successfully applied for the detection of nitrite in tap water samples which proves performance of the Pt‐ErGO nanocomposite films.  相似文献   

17.
《中国化学》2017,35(10):1522-1528
In this study, surface‐enhanced Raman spectroscopy (SERS ) technology was used to rapidly detect illegally added sildenafil drugs. A detailed attribution analysis by density functional theory (DFT ) was used to guide specific experiments. The Raman signals were obtained from a silver colloid (Ag col) substrate, and they increased in the presence of the mineral salt, potassium iodide (KI ). These methods detected sildenafil in aqueous solutions as low as 1 µg/mL with high signal uniformity (RSD =3.77%). Prior to this study, traditional Raman techniques detected substances in solid samples only. Here, Raman technology detected low contents of sildenaful drugs in liquid nutraceuticals. Therefore, SERS technology has great potential for on‐site and real‐time detection of illegal drugs in water and in liquid nutraceuticals.  相似文献   

18.
A novel electrospun composite nanofiber‐based adsorbent (polyurethane/polystyrene‐silica) was fabricated, characterized, and used in the headspace solid‐phase microextraction of the acetylated derivatives of chlorophenols in water samples before gas chromatography with micro electron capture detection. The surface morphology, chemical composition, thermal stability, and structure of the fibers were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Brunauer–Emmett–Teller and Barrett–Joyner–Halenda techniques. The effect of the main parameters influencing the efficiency of the method including extraction temperature, salt concentration, and extraction time was investigated and the optimized conditions were obtained. The linear dynamic ranges were 0.1–800 ng/mL. The relative standard deviations (n = 3) and the limits of detection were 2.64–9.57% and 0.0234–0.830 ng/mL, respectively. The relative recoveries for real samples (river water and sewage of our university campus) were between 90.8 and 111%.  相似文献   

19.
An ultrasensitive surface‐enhanced Raman spectroscopy (SERS) sensor based on rolling‐circle amplification (RCA)‐increased “hot‐spot” was developed for the detection of thrombin. The sensor contains a SERS gold nanoparticle@Raman label@SiO2 core‐shell nanoparticle probe in which the Raman reporter molecules are sandwiched between a gold nanoparticle core and a thin silica shell by a layer‐by‐layer method. Thrombin aptamer sequences were immobilized onto the magnetic beads (MBs) through hybridization with their complementary strand. In the presence of thrombin, the aptamer sequence was released; this allowed the remaining single‐stranded DNA (ssDNA) to act as primer and initiate in situ RCA reaction to produce long ssDNAs. Then, a large number of SERS probes were attached on the long ssDNA templates, causing thousands of SERS probes to be involved in each biomolecular recognition event. This SERS method achieved the detection of thrombin in the range from 1.0×10?12 to 1.0×10?8 M and a detection limit of 4.2×10?13 M , and showed good performance in real serum samples.  相似文献   

20.
β‐Cyclodextrin and its derivatives can selectively bind to various organic molecules in its cavity and provide good applications in sample preparation. Surface‐enhanced Raman spectroscopy is a sensitive technique and has received increasing attention in the last decade. Herein, 3,5‐dimethyl phenyl carbamoylated β‐cyclodextrin bonded silica gel was used as a ssorbent in solid‐phase extraction to selectively enrich forchlorfenuron and thidiazuron followed by determination with surface‐enhanced Raman spectroscopy. It showed excellent selectivity for forchlorfenuron and thidiazuron and the adsorption capacities were 40.0 and 30.0 μg/g, respectively. A rapid and sensitive method based on the modified β‐cyclodextrin solid‐phase extraction coupled with surface‐enhanced Raman spectroscopy was developed. The linear ranges were 30.0–300.0 μg/L for forchlorfenuron and thidiazuron at 1005 and 640 cm?1, respectively. Both of the limits of detection were 15.0 μg/L, which were significantly lower than the maximum permitted by the National Standard. The recoveries of forchlorfenuron and thidiazuron were 78.9–87.9% for the spiked grape, kiwi, cucumber and tomato, with relative standard deviations of 8.1–13.2%. The results show that this method is sensitive, selective, and relatively time saving, and has great potential in the analysis of trace amounts of plant growth regulators in fruits and vegetables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号