首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学》2017,35(10):1575-1585
Binder‐free, nano‐sized needlelike MnO2 ‐submillimeter‐sized reduced graphene oxide (nMnO2‐srGO ) hybrid films with abundant porous structures were fabricated through electrophoretic deposition and subsequent thermal annealing at 500 °C for 2 h. The as‐prepared hybrid films exhibit a unique hierarchical morphology, in which nMnO2 with a diameter of 20—50 nm and a length of 300—500 nm is randomly anchored on both sides of srGO . When evaluated as binder‐free anodes for lithium‐ion half‐cell, the nMnO2‐srGO composites with a content of 76.9 wt% MnO2 deliver a high capacity of approximately 1652.2 mA •h•g−1 at a current density of 0.1 A•g−1 after 200 cycles. The high capacity remains at 616.8 mA •h•g−1 (ca. 65.1% capacity retention) at a current density as high as 4 A•g−1. The excellent electrochemical performance indicates that the nMnO2‐srGO hybrid films could be a promising anode material for lithium ion batteries (LIBs ).  相似文献   

2.
《中国化学》2017,35(8):1294-1298
Amorphous MnO2 has been prepared from the reduction of KMnO4 in ethanol media by a facile one‐step wet chemical route at room temperature. The electrochemical properties of amorphous MnO2 as cathode material in sodium‐ion batteries (SIBs ) are studied by galvanostatic charge/discharge testing. And the structure and morphologies of amorphous MnO2 are investigated by X‐ray diffraction (XRD ), scanning electron microscopy (SEM ), transmission electron microscopy (TEM ) and Raman spectra. The results reveal that as‐synthesized amorphous MnO2 electrode material exhibits a spherical morphology with a diameter between 20 and 60 nm. The first specific discharge capacity of the amorphous MnO2 electrode is 123.2 mAh •g−1 and remains 136.8 mAh •g−1 after 100 cycles at the current rate of 0.1 C. The specific discharge capacity of amorphous MnO2 is maintained at 139.2, 120.4, 89, 68 and 47 mAh •g−1 at the current rate of 0.1 C, 0.2 C, 0.5 C, 1 C and 2 C, respectively. The results indicate that amorphous MnO2 has great potential as a promising cathode material for SIBs .  相似文献   

3.
《中国化学》2017,35(12):1844-1852
The binder‐free composite films of reduced graphene oxide (rGO ) and activated carbon derived from cotton (aCFC ) have been fabricated and used as electrodes for electrochemical capacitors (ECs ) to avoid the decrease of capacitive performance in traditional process caused by the additional binder. The optimal aCFC is prepared at 850 °C when the mass ratio of carbon and potassium hydroxide is 1 to 4. The optimal composite film prepared from the mass ratio of aCFC /GO =2/1 exhibits porous structure, and has a specific surface area of 849.6 m2•g−1 and a total pore volume of 0.61 mL •g−1. Based on the two‐electrode system testing in 6.0 mol/L KOH electrolyte, the optimal composite has specific capacitance of about 202 F•g−1, 374 mF •cm−2 and 116 F•cm−3 in terms of mass, area and volume, and shows excellent rate capability and good cyclic stability (91.7% retention of the initial capacitance after 5000 cycles). Furthermore, the assembled solid‐state ECs by using KOH /polyvinyl alcohol as electrolyte show good mechanical stability and capacitive performances after repeated bending cycles. It is proved that this method is effective to fabricate binder‐free electrodes for ECs and will open up a novel route for the reuse of waste cotton.  相似文献   

4.
A novel method for the highly efficient and reversible capture of CO in carbanion‐functionalized ionic liquids (ILs) by a C‐site interaction is reported. Because of its supernucleophilicity, the carbanion in ILs could absorb CO efficiently. As a result, a relatively high absorption capacity for CO (up to 0.046 mol mol−1) was achieved under ambient conditions, compared with CO solubility in a commonly used IL [Bmim][Tf2N] (2×10−3 mol mol−1). The results of quantum mechanical calculations and spectroscopic investigation confirmed that the chemical interaction between the C‐site in the carbanion and CO resulted in the superior CO absorption capacities. Furthermore, the subsequent conversion of captured CO into valuable chemicals with good reactivity was also realized through the alkoxycarbonylation reaction under mild conditions. Highly efficient CO absorption by carbanion‐functionalized ILs provides a new way of separating and converting CO.  相似文献   

5.
Mesoporous CuO–reduced graphene oxide (rGO) composite powders were prepared by using a two‐step spray‐drying process. In the first step, hollow CuO powders were prepared from a spray solution of copper nitrate trihydrate with citric acid and were wet milled to obtain a colloidal spray solution. In the second step, spray drying of the colloidal solution that contained dispersed GO nanosheets produced mesoporous CuO–rGO composite powders with particle sizes of several microns. Thermal reduction of GO nanosheets to rGO nanosheets occurred during post‐treatment at 300 °C. Initial discharge capacities of the hollow CuO, bare CuO aggregate, and CuO–rGO composite powders at a current density of 2 A g?1 were 838, 1145, and 1238 mA h g?1, respectively. Their discharge capacities after 200 cycles were 259, 380, and 676 mA h g?1, respectively, and their corresponding capacity retentions measured from the second cycle were 67, 48, and 76 %, respectively. The mesoporous CuO–rGO composite powders have high structural stability and high conductivity because of the rGO nanosheets, and display good cycling and rate performances.  相似文献   

6.
An aligned and laminated sulfur‐absorbed mesoporous carbon/carbon nanotube (CNT) hybrid cathode has been developed for lithium–sulfur batteries with high performance. The mesoporous carbon acts as sulfur host and suppresses the diffusion of polysulfide, while the CNT network anchors the sulfur‐absorbed mesoporous carbon particles, providing pathways for rapid electron transport, alleviating polysulfide migration and enabling a high flexibility. The resulting lithium–sulfur battery delivers a high capacity of 1226 mAh g−1 and achieves a capacity retention of 75 % after 100 cycles at 0.1 C. Moreover, a high capacity of nearly 900 mAh g−1 is obtained for 20 mg cm−2, which is the highest sulfur load to the best of our knowledge. More importantly, the aligned and laminated hybrid cathode endows the battery with high flexibility and its electrochemical performances are well maintained under bending and after being folded for 500 times.  相似文献   

7.
《中国化学》2017,35(8):1317-1321
A novel non‐enzymatic nitrite sensor was fabricated by immobilizing MnOOH‐PANI nanocomposites on a gold electrode (Au electrode). The morphology and composition of the nanocomposites were investigated by transmission electron microscopy (TEM ) and Fourier transform infrared spectrum (FTIR ). The electrochemical results showed that the sensor possessed excellent electrocatalytic ability for NO2 oxidation. The sensor displayed a linear range from 3.0 μmol•L−1 to 76.0 mmol•L−1 with a detection limit of 0.9 μmol•L−1 (S/N = 3), a sensitivity of 132.2 μA •L•mol−1•cm−2 and a response time of 3 s. Furthermore, the sensor showed good reproducibility and long‐term stability. It is expected that the MnOOH‐PANI nanocomposites could be applied for more active sensors and used in practice for nitrite sensing.  相似文献   

8.
To recycle rusty stainless‐steel meshes (RSSM) and meet the urgent requirement of developing high‐performance cathodes for potassium‐ion batteries (KIB), we demonstrate a new strategy to fabricate flexible binder‐free KIB electrodes via transformation of the corrosion layer of RSSM into compact stack‐layers of Prussian blue (PB) nanocubes (PB@SSM). When further coated with reduced graphite oxide (RGO) to enhance electric conductivity and structural stability, the low‐cost, stable, and binder‐free RGO@PB@SSM cathode exhibits excellent electrochemical performances for KIB, including high capacity (96.8 mAh g−1), high discharge voltage (3.3 V), high rate capability (1000 mA g−1; 42 % capacity retention), and outstanding cycle stability (305 cycles; 75.1 % capacity retention).  相似文献   

9.
A facile, one‐pot method for synthesizing spherical‐like metal sulfide–reduced graphene oxide (RGO) composite powders by spray pyrolysis is reported. The direct sulfidation of ZnO nanocrystals decorated on spherical‐like RGO powders resulted in ZnS–RGO composite powders. ZnS nanocrystals with a size below 20 nm were uniformly dispersed on spherical‐like RGO balls. The discharge capacities of the ZnS–RGO, ZnO–RGO, bare ZnS, and bare ZnO powders at a current density of 1000 mA g?1 after 300 cycles were 628, 476, 230, and 168 mA h g?1, respectively, and the corresponding capacity retentions measured after the first cycles were 93, 70, 40, and 21 %, respectively. The discharge capacity of the ZnS–RGO composite powders at a high current density of 4000 mA g?1 after 700 cycles was 437 mA h g?1. The structural stability of the highly conductive ZnS–RGO composite powders with ultrafine crystals during cycling resulted in excellent electrochemical properties.  相似文献   

10.
Organic room‐temperature sodium‐ion battery electrodes with carboxylate and carbonyl groups have been widely studied. Herein, for the first time, we report a family of sodium‐ion battery electrodes obtained by replacing stepwise the oxygen atoms with sulfur atoms in the carboxylate groups of sodium terephthalate which improves electron delocalization, electrical conductivity and sodium uptake capacity. The versatile strategy based on molecular engineering greatly enhances the specific capacity of organic electrodes with the same carbon scaffold. By introducing two sulfur atoms to a single carboxylate scaffold, the molecular solid reaches a reversible capacity of 466 mAh g−1 at a current density of 50 mA g−1. When four sulfur atoms are introduced, the capacity increases to 567 mAh g−1 at a current density of 50 mA g−1, which is the highest capacity value reported for organic sodium‐ion battery anodes until now.  相似文献   

11.
Carbon‐based transition‐metal oxides are considered as an appropriate anode material candidate for lithium‐ion batteries. Herein, a simple and scalable dry production process is developed to produce carbon‐encapsulated 3D net‐like FeOx /C materials. The process is simply associated with the pyrolysis of a solid carbon source, such as filter paper, adsorbed with ferrite nitrate. The carbon derived from filter paper induces a carbothermal reduction to form metallic Fe, the addition of carbon and iron increase the conductivity of this material. As expected, this 3D net‐like FeOx /C composite delivers an excellent charge capacity of 851.3 mAh g−1 after 50 cycles at 0.2 A g−1 as well as high stability and rate performance of 714.7 mAh g−1 after 300 cycles at 1 A g−1. Superior performance, harmlessness, low costs, and high yield may greatly stimulate the practical application of the products as anode materials in lithium‐ion batteries.  相似文献   

12.
《化学:亚洲杂志》2017,12(1):116-121
Antimony/porous biomass carbon nanocomposites have been prepared by a chemical reduction method and applied as anodes for sodium‐ion batteries. The porous biomass carbon derived from a black fungus had a large Brunauer–Emmett–Teller (BET) surface area of 2233 m2 g−1 in which antimony nanoparticles were uniformly distributed in the porous carbon. The as‐prepared antimony/porous biomass carbon nanocomposites exhibited a high reversible sodium storage capacity of 567 mA h g−1 at a current density of 100 mA g−1, extended cycling stability, and good rate capability.  相似文献   

13.
In the present work, Mn‐doped CuO‐NPs‐AC was prepared by a simple method, characterized using various techniques such as FESEM, EDX, XRD, PSD, and pHpzc and finally used for the adsorption of malachite green (MG) and methyl orange (MO) in a number of single and binary solutions. A series of adsorption experiments were conducted to investigate and optimize the influence of various factors (such as different pH, concentration of MG and MO, adsorbent mass, and sonication time) on the simultaneous adsorption of MG and MO using response surface methodology. Under optimal conditions of pH 10, adsorbent dose of 0.02 g, MG concentration of 30 mg L?1, MO concentration of 30 mg L?1, and sonication time of 4.5 min at room temperature, the maximum predicted adsorption was observed to be 100.0%, for both MG and MO, showing that there is a favorable harmony between the experimental data and model predictions. The adsorption isotherm of MO and MG by Mn‐doped CuO‐NPs‐AC could be well clarified by the Langmuir model with maximum adsorption capacity of 320.69 mg g?1 and 290.11 mg g?1 in the single solution and 233.02 mg g?1 and 205.53 mg g?1 in the binary solution by 0.005 g of adsorbent mass for MG and MO, respectively. Kinetic studies also revealed that both MG and MO adsorption were better defined by the pseudo‐second order model for both solutions. In addition, the thermodynamic constant studies disclosed that the adsorption of MG and MO was likely to be influenced by a physisorption mechanism. Eventually, the reusability of the Mn‐doped CuO‐NPs‐AC after six times showed a reduction in the adsorption percentage of MG and MO.  相似文献   

14.
《化学:亚洲杂志》2017,12(1):36-40
N‐doped mesoporous carbon‐capped MoO2 nanobelts (designated as MoO2@NC) were synthesized and applied to lithium‐ion storage. Owing to the stable core–shell structural framework and conductive mesoporous carbon matrix, the as‐prepared MoO2@NC shows a high specific capacity of around 700 mA h g−1 at a current of 0.5 A g−1, excellent cycling stability up to 100 cycles, and superior rate performance. The N‐doped mesoporous carbon can greatly improve the conductivity and provide uninhibited conducting pathways for fast charge transfer and transport. Moreover, the core–shell structure improved the structural integrity, leading to a high stability during the cycling process. All of these merits make the MoO2@NC to be a suitable and promising material for lithium ion battery.  相似文献   

15.
《中国化学》2017,35(8):1305-1310
A novel biosensor was fabricated based on the immobilization of tyrosinase and N ‐acetyl‐L ‐cysteine‐capped gold nanoparticles onto the surface of the glassy carbon electrode via the film forming by chitosan. The NAC‐AuNPs (N ‐acetyl‐L ‐cysteine‐capped gold nanoparticles) with the average size of 3.4 nm had much higher specific surface area and good biocompatibility, which were favorable for increasing the immobilization amount of enzyme, retaining the catalytic activity of enzyme and facilitating the fast electron transfer. The prepared biosensor exhibited suitable amperometric responses at −0.2 V for phenolic compounds vs. saturated calomel electrode. The parameters of influencing on the working electrode such as pH , temperature, working potential were investigated. Under optimum conditions, the biosensor was applied to detect catechol with a linear range of 1.0 × 10−7 to 6.0 × 10−5 mol•L−1 , and the detection limit of 5.0 × 10−8 mol•L−1 (S /N =3). The stability and selectivity of the proposed biosensor were also evaluated.  相似文献   

16.
Lithium‐ion batteries (LIBs) are primary energy storage devices to power consumer electronics and electric vehicles, but their capacity is dramatically decreased at ultrahigh charging/discharging rates. This mainly originates from a high Li‐ion/electron transport barrier within a traditional electrode, resulting in reaction polarization issues. To address this limitation, a functionally layer‐graded electrode was designed and fabricated to decrease the charge carrier transport barrier within the electrode. As a proof‐of‐concept, functionally layer‐graded electrodes composing of TiO2(B) and reduced graphene oxide (RGO) exhibit a remarkable capacity of 128 mAh g−1 at a high charging/discharging rate of 20 C (6.7 A g−1), which is much higher than that of a traditionally homogeneous electrode (74 mAh g−1) with the same composition. This is evidenced by the improvement of effective Li ion diffusivity as well as electronic conductivity in the functionally layer‐graded electrodes.  相似文献   

17.
Herein we present a simple method for fabricating core–shell mesostructured CuO@C nanocomposites by utilizing humic acid (HA) as a biomass carbon source. The electrochemical performances of CuO@C nanocomposites were evaluated as an electrode material for supercapacitors and lithium‐ion batteries. CuO@C exhibits an excellent capacitance of 207.2 F g?1 at a current density of 1 A g?1 within a potential window of 0–0.46 V in 6 M KOH solution. Significantly, CuO electrode materials achieve remarkable capacitance retentions of approximately 205.8 F g?1 after 1000 cycles of charge/discharge testing. The CuO@C was further applied as an anode material for lithium‐ion batteries, and a high initial capacity of 1143.7 mA h g?1 was achieved at a current density of 0.1 C. This work provides a facile and general approach to synthesize carbon‐based materials for application in large‐scale energy‐storage systems.  相似文献   

18.
《中国化学》2017,35(7):1098-1108
In this study, chemical reduced graphene‐silver nanoparticles hybrid (AgNPs @CR‐GO ) with close‐packed AgNPs structure was used as a conductive matrix to adsorb enzyme and facilitate the electron transfer between immobilized enzyme and electrode. A facile route to prepare AgNPs @CR‐GO was designed involving in β ‐cyclodextrin (β ‐CD ) as reducing and stabilizing agent. The morphologies of AgNPs were regulated and controlled by various experimental factors. To fabricate the bioelectrode, AgNPs @CR‐GO was modified on glassy carbon electrode followed by immobilization of glucose oxidase (GOx ) or laccase. It was demonstrated by electrochemical testing that the electrode with close‐packed AgNPs provided high GOx loading (Γ =4.80 × 10−10 mol•cm−2) and fast electron transfer rate (k s=5.76 s−1). By employing GOx based‐electrode as anode and laccase based‐electrode as cathode, the assembled enzymatic biofuel cell exhibited a maximum power density of 77.437 μW •cm−2 and an open‐circuit voltage of 0.705 V.  相似文献   

19.
We have synthesized and characterized perovskite‐type SrCo0.9Nb0.1O3−δ (SCN) as a novel anion‐intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm−3 (and gravimetric capacitance of ca. 773.6 F g−1) at a current density of 0.5 A g−1 while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg−1 with robust long‐term stability.  相似文献   

20.
Phosphorus‐rich metal phosphides have very high lithium storage capacities, but they are difficult to prepare. A low‐temperature phosphorization method based on Mg reducing PCl3 in ZnCl2 molten salt at 300 °C is developed to synthesize phosphorus‐rich CuP2@C from a Cu‐MOF derived Cu@C composite. Abnormal oxidation of Cu by Zn2+ in the molten salt is observed, which leads to the porous honeycomb nanostructure and homogeneously distributed ultrafine CuP2 nanocrystals. The honeycomb CuP2@C exhibits excellent lithium storage performance with high reversible capacity (1146 mAh g?1 at 0.2 A g?1) and superior cycling stability (720 mAh g?1 after 600 cycles at 1.0 A g?1), showing the promising application of P‐rich metal phosphides in lithium ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号