首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A template synthesis allows the preparation of monodisperse nanoparticles with high reproducibility and independent from self‐assembly requirements. Tailor‐made polymer cages were used for the preparation of nanoparticles, which were made of cross‐linked macromolecules with pendant thiol groups. Gold nanoparticles (AuNPs) were prepared in the polymer cages in situ, by using different amounts of cages versus gold. The polymer cages exhibited a certain capacity, below which the AuNPs could be grown with excellent control over the size and shape. Control experiments with a linear diblock copolymer showed a continuous increase in the AuNP size as the gold feed increased. This completely different behavior regarding the AuNP size evolution was attributed to the flexibility of the polymer chain depending on cross‐linking. Moreover, the polymer cages were suitable for the encapsulation of AgNPs, PdNPs, and PtNPs by the in situ method.  相似文献   

2.
The interaction between amino acids (l-cysteine, l-lysine) and gold nanoparticle layers deposited on ITO glasses was investigated. The citrate capped gold nanoparticles (AuNP) were first deposited as a thin layer onto silanized ITO and subsequently linked with an amino acid, due to strong affinity of thiol and amine groups to gold. The gold nanoparticles had an elliptical shape, with size varying between 7 and 14 nm, as indicated by TEM analysis. After deposition on ITO substrate, the nanoparticles self-assembled into large aggregates with poor contact between, as revealed by AFM. After linking l-cysteine or l-lysine to the surface of nanoparticles layer, a change in morphology occured. A better contact between the gold aggregates boundary developed, which improved the conducting properties of the nanostructured layer. The electrical resistance of the AuNPs layer, obtained from IV measurements, was very high (2.8 × 1013 Ω) and slightly decreased after linking the NPs with amino acids.  相似文献   

3.
《Electroanalysis》2017,29(7):1820-1827
This paper describes the application of exfoliated graphite nanoplatelets (xGnP) decorated with gold nanoparticles (AuNP) for the development of a label‐free electrochemical immunosensor for the determination of human cardiac troponin T (TnT), an important cardiac biomarker in the diagnosis of acute myocardial infarction (AMI). Heparin‐stabilized AuNP (AuNP‐Hep) were synthesized, characterized and supported on xGnP. The material obtained (AuNP‐Hep‐xGnP) was used as a platform to immobilize the anti‐TnT by adsorption and this was then applied in the construction of an immunosensor. Under optimized conditions, using differential pulse voltammetry (DPV) and an incubation time of 20 min, the proposed immunosensor showed linearity in the range of 0.050 to 0.35 ng mL−1 TnT, with a calculated limit of detection of 0.016 ng mL−1. The interday precision (n=7) showed a coefficient of variation of 6.5 %. Some potential interferents commonly present in blood plasma samples were investigated and the degree of interference was found to be low (less than 10 %), demonstrating adequate selectivity for analytical applications. The biosensor was successfully applied in the determination of TnT in fortified samples of human blood plasma.  相似文献   

4.
Di‐ and triblock non‐ionic copolymers based on poly(ethylene oxide) and poly(propylene oxide) were studied for the stabilization of nanoparticles in water at high ionic strength. The effect of the molecular architecture (di‐ vs. triblock) of these amphiphilic copolymers was investigated by using gold nanoparticles (AuNPs) as probes for colloidal stability. The results demonstrate that both di‐ and triblock copolymers can provide long term stability, and that in both cases AuNPs are individually embedded within globules of polymers. However, in the case of diblock copolymers, the colloidal stability was related to the formation of micelles, in contrast with the case of triblock copolymers, which were previously shown to provide good stability even at concentrations at which micelles do not form. Quartz crystal microbalance (QCM) experiments showed that the presence of the hydrophobic block in the structure of the polymer is important to ensure quantitative adsorption upon a gold surface and to limit desorption. We demonstrate that with an appropriate choice of polymer, the polymer/AuNP hybrids can also undergo filtration and freeze‐drying without noticeable aggregation, which can be very convenient for further applications. Finally, preliminary studies of the cytotoxicity effect on fibroblast cells show that the polymer/AuNP hybrids were not cytotoxic. TEM micrographs on ultrathin sections of cells after incubation with the colloidal solutions show that the nanoparticles were internalized into the cells, conserving their initial size and shape.  相似文献   

5.
Photolysis of organic solvent soluble aryl azide‐modified gold nanoparticles (N3‐AuNPs) with a core size of 4.6±1.6 nm results in the generation of interfacial reactive nitrene intermediates. The high reactivity of the nitrenes is utilized to tether the AuNP to the native surface of carbon nanotubes, and reduce graphene oxide and micro‐diamond powder, likely via addition to π‐conjugated carbon skeleton or insertion into the functionalities at the surface, to yield the desired hybrid material without the need for pretreatment of the surface. The AuNP‐covalent hybrid materials are robust in that they survive vigorous washing and sonication. In the absence of photolysis no attachment occurs with the same N3‐AuNP. The nanohybrid AuNP‐nanohybrid materials are characterized using a combination of TEM, powder XRD, XPS and UV/Vis and IR spectroscopies. All of the characterization studies confirm the uniform incorporation of the AuNP on the irradiated substrates.  相似文献   

6.
在超声条件下采用二步电解方法在十六烷基三甲基溴化铵/丙酮/水三组分体系中合成金纳米粒子. 首先采用恒电流或电位的阶跃方法, 使体系中生成较小的金纳米粒子并作为晶种; 接着采用电位双阶跃方法, 使金纳米粒子在原来基础上继续生长, 控制电解电量可获得不同大小的金纳米粒子. 通过静电作用在洁净的单晶硅片表面组装金纳米粒子, 获得具有不同形貌的硅片, 并以此作为表面增强拉曼散射基底, 以吡啶为探针分子, 研究了不同基底的表面增强拉曼散射活性, 结果表明吡啶谱峰强弱与纳米粒子在硅片表面的排列形貌有关.  相似文献   

7.
This paper demonstrates that capillary electrophoresis (CE) can be employed for characterizing the sizes of nanometer-scale gold particles. We characterized the gold nanoparticles by effecting CE separation using a buffer of SDS (70 mM) and 3-cyclohexylamino-1-propanesulfonic acid (CAPS; 10 mM) at pH 11.0 and an applied voltage of 18 kV and obtained a linear relationship (R2 > 0.99) between electrophoretic mobilities and size for nanoparticles whose diameters fall in the regime from 5.0 ± 0.5 to 41.2 ± 3.3 nm; the relative standard deviations of these electrophoretic mobilities are <0.8%. We evaluated the feasibility of employing these separation conditions for the size characterization by of gold nanoparticle samples that were synthesized by a rapid microwave heating method. We confirmed that this CE method is a valid one for size characterization by comparing the results obtained by CE with those provided by scanning electron microscopy (SEM); a good correlation exists between these two techniques. Our results demonstrate that CE can be employed to accelerate the analysis of the sizes of nanomaterials.  相似文献   

8.
Due to their small size (1-100 nm), nanoparticles exhibit novel materials properties that differ considerably from those of the bulk solid state. Especially in recent years, the interests in nanometer-scale magnetic particles are growing based on their potential application as high density magnetic storage media. A unique reverse micelle method has been developed to prepare gold-coated iron nanoparticles. XRD, UV/vis, TEM and magnetic measurements are used to characterize the nanocomposites. XRD only gives FCC paterns of gold for the obtained nanoparticles. There is a red shift and broadening of Au@Fe colloid relative to pure gold colloid in the absorption spectra. TEM results show that the average size of Au@Fe nanoparticle is about 10 nm. These nanoparticles self-assembled into wires in micron level under a 0.5 T magnetic field. Magnetic measurements show that the particles are superparamagnetic with a blocking temperature of 42 K. Coercivity of the obtained nanoparticles decreases with the measuring temperature, which are 730 Oe,320 Oe and 0 at 2 K, 10 K and 300 K, respectively.  相似文献   

9.
Polystyrene‐core–silica‐shell hybrid particles were synthesized by combining the self‐assembly of nanoparticles and the polymer with a silica coating strategy. The core–shell hybrid particles are composed of gold‐nanoparticle‐decorated polystyrene (PS‐AuNP) colloids as the core and silica particles as the shell. PS‐AuNP colloids were generated by the self‐assembly of the PS‐grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the “free” PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core–shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high‐temperature catalysis and as nanoreactors.  相似文献   

10.
Nanometer sized materials have been shown to possess excellent chemical and electrochemical catalytic properties. In this work, a gold nanoparticle (AuNP) modified indium tin oxide (ITO) electrode was employed for investigating its electro-catalytic property. AuNP was deposited on the 3-aminopropyltriethoxysilane (APTES) modified ITO electrode by self-assembly, and was characterized by scanning electron microscopy and cyclic voltammetry. Although the electrochemical reaction of dopamine was very sluggish on the ITO/APTES electrode, it was significantly enhanced after AuNP deposition. The cyclic voltammogram exhibited apparent dependence on the surface coverage of 11 nm AuNPs, which could be rationalized by different modes of mass diffusion. Among the different sizes of AuNP investigated, the lowest anodic peak potential was observed on 11 nm AuNP. However, the potential was still about 50 mV more positive than that obtained on a bulk gold electrode of similar geometry. It is therefore concluded that there is no nanometer size effect of AuNP modified ITO on the electrochemistry of dopamine.  相似文献   

11.
The electronic absorption spectra and optical-limiting (OL) properties of gold nanoparticle (AuNP) aggregates induced by KCl and NaCl have been investigated using 4.1-ns laser pulses at 532 nm. Although the individual AuNP colloid shows no optical-limiting effect, the AuNP aggregates exhibit significant optical-limiting characteristics. With an increased concentration of KCl and NaCl, the surface plasmon resonance (SPR) band shifts to a longer wavelength, and the optical-limiting performance is enhanced. Both the electronic absorption and optical limiting are influenced by the particle size. The larger the individual nanoparticle, the further red-shifted the SPR band and the stronger the optical limiting. Optical limiting of aggregates induced by KCl is stronger than that of aggregates induced by NaCl. Mechanistic studies reveal that free-carrier absorption is the dominant contributor to the optical limiting, with negligible contribution from nonlinear scattering.  相似文献   

12.
A promising modified electrode was fabricated by polymerization a conductive polymer film of dipicolinic acid (DPA) onto gold nanoparticle (AuNP)‐cysteine‐gold electrode (Au). The morphology of poly(DPA)‐AuNP‐Au electrode was investigated by scanning electron microscopy (SEM). This chemically modified electrode was used for electrochemical determination of cadmium and zinc in aqueous media using differential pulse anodic stripping voltammetry. The result showed that the modified electrode could clearly resolve the anodic stripping peaks of zinc and cadmium. The linear analytical curves were obtained in the ranges of 0.020–25.0 and 0.045–17.0 µM for zinc and cadmium respectively. The limit of detections (S/N=3) were 0.008 µM for zinc and 0.015 µM for cadmium.  相似文献   

13.
The controlled assembly of gold nanoparticles (AuNPs) with the size of quantum dots into predictable structures is extremely challenging as it requires the quantitatively and topologically precise placement of anisotropic domains on their small, approximately spherical surfaces. We herein address this problem by using polyoxometalate leaving groups to transform 2 nm diameter gold cores into reactive building blocks with hydrophilic and hydrophobic surface domains whose relative sizes can be precisely tuned to give dimers, clusters, and larger micelle‐like organizations. Using cryo‐TEM imaging and 1H DOSY NMR spectroscopy, we then provide an unprecedented “solution‐state” picture of how the micelle‐like structures respond to hydrophobic guests by encapsulating them within 250 nm diameter vesicles whose walls are comprised of amphiphilic AuNP membranes. These findings provide a versatile new option for transforming very small AuNPs into precisely tailored building blocks for the rational design of functional water‐soluble assemblies.  相似文献   

14.
Hybrid gold–polymer nanoparticles are obtained by self‐assembly of amphiphilic copolymers (Pluronics) in solutions containing preformed gold nanoparticles (diameter ca. 12 nm). Dynamic light scattering, TEM, cryo‐TEM, and small‐angle neutron scattering experiments with contrast variation are used to characterize the structure of the gold–polymer particles. Five Pluronics (F127, F68, F88, F108, P84) with different molecular weights and hydrophilic/hydrophobic balances are investigated. Gold nanoparticles are individually embedded within globules of polymer, even under conditions for which Pluronics micelles do not form in solution. The hybrid particles are several tens of nanometers in size (larger than micelles of the corresponding Pluronics), and the size can be tuned by changing the temperature.  相似文献   

15.
A systematic investigation of two parameters steering the size of linear octadentate heptamer‐coated gold nanoparticles (AuNP s) is presented, being i ) the chemical structure (sulfur‐sulfur distance) of the coating thioether heptamer ligand and ii ) the ratio of ligand to tetrachloroauric acid (HA uCl4) reduced during the formation of the AuNP s. For this purpose, a novel terphenyl‐based thioether heptamer ( Ter ) is synthesized via an end‐capping oligomerization strategy, comprising an increased distance between neighboring sulfur atoms in the ligand backbone compared to the meta‐xylene‐ ( Xyl ) and tetraphenylmethane‐ ( TPM ) based heptamers. While for both investigated parameters a clear trend to various‐sized NP s is shown, a stronger influence in the resulting sizes is observed by alteration of ligand to gold‐ratio. Remarkable processability‐ and long‐term stability‐features were observed for AuNP s stabilized by the bulky tetraphenylmethane‐based heptamer ( TPM ).  相似文献   

16.
This work reports a new electrochemical monitoring platform for sensitive detection of Cu2+ coupling click chemistry with nanogold‐functionalized PAMAM dendrimer (AuNP‐PAMAM). The system involved an alkyne‐modified carbon electrode and an azide‐functionalized AuNP‐PAMAM. Initially, the added Cu2+ was reduced to Cu+ by the ascorbate, and then the azide‐modified AuNP‐PAMAM was covalently conjugated to the electrode via Cu+‐catalyzed azide‐alkyne click reaction. The carried AuNPs accompanying PAMAM dendrimer could be directly monitored by stripping voltammetry after acidic pretreatment. By introduction of high‐loading PAMAM dendrimer with gold nanoparticles, as low as 2.8 pM Cu2+ (ppt) could be detected, which was 125‐fold lower than that of gold nanoparticle‐based labeling strategy. The method exhibited high specificity toward target Cu2+ against other potentially interfering ions, and was applicable for monitoring Cu2+ in drinking water with satisfactory results.  相似文献   

17.
Maghemite (γ‐Fe2O3) colloid has been synthesized by coprecipitation of ferrous and ferric salts in alkaline medium and oxidation. The obtained nanoparticles were complexed with a phosphate macromonomer—penta(propylene glycol) methacrylate phosphate (PPGMAP). Complexes with the weight ratio PPGMAP/γ‐Fe2O3 0.01–10 were investigated using a range of characterization methods. The amount of PPGMAP attached to the particles was about 22 wt %. The size and size distribution of the γ‐Fe2O3 core particles in the dry state was measured by TEM. To complete the TEM images, the hydrodynamic size of the nanoparticles including polymer shell and the maghemite core was determined by DLS measurements in toluene. Magnetic poly(glycidyl methacrylate) (PGMA) nanospheres were obtained by Kraton G 1650‐stabilized and 2,2′‐azobisisobutyronitrile‐initiated polymerization of glycidyl methacrylate (GMA) in toluene or toluene/cyclohexane mixture in the presence of PPGMAP‐coated γ‐Fe2O3 colloid. The effect of Kraton G 1650 concentration on the morphology, PGMA nanosphere size and polydispersity was investigated. The particles were characterized also by both thermogravimetric analysis and magnetic measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4982–4994, 2009  相似文献   

18.
Photoluminescent nanoparticles of gold with size 3, 4, 6, and 9nm are prepared by borohydride/citrate reduction in presence of polyethylene glycol (PEG)/tannic acid. The prepared nanomaterials are characterized by UV-vis spectroscopy and dynamic light scattering (DLS) technique. Intense photoluminescence (PL) is observed in nanoparticles prepared by fast reduction with borohydride in presence of PEG. A red shift of PL emission from 408 to 456nm is observed for the change of size from 4 to 6nm. Increase in PL intensity is observed for all the nanoparticles on the addition of KCl. Citrate reduced gold colloid which consists of large particles of size approximately 35nm with anisotropic shapes showing two plasmon peaks is also prepared. The anisotropy is confirmed by TEM measurement. SERS activity of this colloid is tested using glutamic acid as an adsorbate probe. Assignment of the observed bands is given.  相似文献   

19.
Herein, we study the permeation free energy of bare and octane‐thiol‐capped gold nanoparticles (AuNPs) translocating through a lipid membrane. To investigate this, we have pulled the bare and capped AuNPs from bulk water to the membrane interior and estimated the free energy cost. The adsorption of the bare AuNP on the bilayer surface is energetically favorable but further loading inside it requires energy. However, the estimated free‐energy barrier for loading the capped AuNP into the lipid membrane is much higher compared to bare AuNP. We also demonstrate the details of the permeation process of bare and capped AuNPs. Bare AuNP induces the curvature in the lipid membrane whereas capped AuNP creates an opening in the interacting monolayer and get inserted into the membrane. The insertion of capped AuNP induces a partial unzipping of the lipid bilayer, which results in the ordering of the local lipids interacting with the nanoparticle. However, bare AuNP disrupts the lipid membrane by pushing the lipid molecules inside the membrane. We also analyze pore formation due to the insertion of capped AuNP into the membrane, which results in water molecules penetrating the hydrophobic region.  相似文献   

20.
Faulds K  Smith WE  Graham D  Lacey RJ 《The Analyst》2002,127(2):282-286
Methods of detection of amphetamine sulfate using surface enhanced Raman scattering (SERS) from colloidal suspensions and vapour deposited films of both silver and gold are compared. Different aggregating agents are required to produce effective SERS from silver and gold colloidal suspensions. Gold colloid and vapour deposited gold films give weaker scattering than the equivalent silver substrates when high concentrations of drug are analysed but they also give lower detection limits, suggesting a smaller surface enhancement but stronger surface adsorption. A 10(-5) mol dm(-3) solution (the final concentration after addition of colloid was 10(-6) mol dm(-3)) of amphetamine sulfate was detected from gold colloid with an RSD of 5.4%. 25 microl of the same solution could be detected on a roughened gold film. The intensities of the spectra varied across the film surface resulting in relatively high RSDs. The precision was improved by averaging the scattering from several points on the surface. An attempt to improve the detection limit and precision by concentrating a suspension of gold colloid and amphetamine sulfate in aluminium wells did not give effective quantitation. Thus, positive identification and semi-quantitative estimation of amphetamine sulfate can be made quickly and easily using SERS from suspended gold colloid with the appropriate aggregating agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号