首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The mechanism of low frequency oscillations in Hall thrusters is usually explained using the predator‐prey type model, but the reasonable boundary conditions for the model have not been given. Analyses on thrusters' model equations show that besides the processes of neutral replenishment and ionization avalanche, the effects of dynamic electric field are also necessary for low frequency oscillations. The dynamic electric field reflects the interaction of ionization zone with acceleration zone, and is embodied in boundary conditions of the predator‐prey type model. Furthermore, a basic predator‐prey type model with reasonable boundary conditions and complete physical mechanism is proposed. And the effects of electric field on low frequency oscillations are verified by experiment (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
It is known that the static magnetic field of a Hall thruster remains unchanged with the product of coil current and coil turn kept constant. This is called the ampere‐turns equivalence principle, which is used in the static magnetic field design of Hall thrusters. It is found that the discharge characteristic is different with the same static magnetic field which is formed by the same ampere‐turns but different coil turns. The effects of the fluctuating magnetic field on the static magnetic field are studied experimentally and theoretically, and the effective collision frequency is calculated based on the dispersion relation of coupling oscillations and the estimation of the fluctuating magnetic field. Results indicate that the different coil turns are accompanied by different coupling intensities which lead to different magnetic field fluctuations. The different magnetic field fluctuations cause differences in the effective electron collision frequency and therefore the electron conductivity and the discharge characteristic of Hall thrusters (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The Particle‐in‐Cell (PIC) method was used to study two different ion thruster concepts: Hall Effect Thrusters (HETs) and High Efficiency Multistage Plasma Thrusters (HEMPs), in particular the plasma properties in the discharge chamber due to the different magnetic field configurations. Special attention was paid to the simulation of plasma particles fluxes on the thrusters inner surfaces. In both cases PIC proved itself as a powerful tool, delivering important insight into the basic physics of the different thruster concepts.The simulations demonstrated that the new HEMP thruster concept allows for a high thermal efficiency due to both minimal energy dissipation and high acceleration efficiency. In the HEMP thruster the plasma contact to the wall is limited only to very small areas of the magnetic field cusps, which results in much smaller ion flux to the thruster channel surface as compared to HET. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
5.
A novel multi‐bit non‐volatile flip‐flop (NVFF) written by spin‐Hall‐assisted spin‐transfer torque (STT) is proposed. This NVFF employs perpendicular‐anisotropy MTJs and requires an STT current combined with a spin‐Hall current to write the data. Thanks to the assistance of spin‐Hall effect (SHE), the incubation delay required by the conventional STT switching can be eliminated to achieve fast operation. Our proposed NVFF uses multi‐bit architecture and shows high‐density and low‐energy advantages over hybrid NV/volatile FFs in the application of the NV register file. Sim‐ulation results show that the proposed spin‐Hall‐assisted NVFF saves ~31% storage density and ~32% energy dissipation compared with the conventional STT‐NVFF. Moreover, the reliability of MTJ barrier is enhanced due to the reduction of the write voltage. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

6.
磁场梯度对Hall推力器放电特性影响的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
鄂鹏  段萍  江滨浩  刘辉  魏立秋  徐殿国 《物理学报》2010,59(10):7182-7190
为进一步探索Hall推力器通道内磁场优化设计理论,通过实验分析了强场区磁场梯度对推进剂的电离与加速等放电过程的影响. 研究发现,在本实验设计的磁场梯度范围内,磁场梯度大小对推进剂的电离过程影响较小,但是对离子流的加速特性会产生较为明显的影响.随着磁场梯度的增加,离子束的能量分布会趋于集中,推力器效率提高. 最后,对磁场轴向梯度进一步变大可能会引起的一系列物理问题如有限Larmor半径效应、电子传导机理转变规律和梯度漂移效应等进行了分析和思考.  相似文献   

7.
A curved, convex towards the channel bottom magnetic field is an important feature of an advanced Hall thruster that allows confining the plasma flow in the channel center, reducing the divergence angle of the ejected ion beam, and improving the discharge performance. In this article, the discharge behaviour of a Hall thruster in magnetic fields with different degrees of curvature is simulated with a particle‐in‐cell numerical method, and the effect of curved magnetic field on the ion bombardment and wall erosion and the associated mechanisms are studied and analysed. The results show that, as the curvature of the magnetic field increases, the propellant ionization becomes more confined at the channel center, the potential drop inside the channel decreases, and the acceleration region shifts outside the channel, which lead to the attenuation of the ion energy bombarding the wall and the deviation of the bombardment angle from the optimal sputtering angle. Conversely, the ion flux bombarding the wall near the channel exit increases. Nevertheless, the bombardment energy and angle are the dominant factors for the wall erosion, and the wall erosion rate clearly decreases with the increasing curvature of the magnetic field. These findings are closely related to the behaviour of electron conduction under a curved magnetic field; the relevant mechanisms are clarified in this article.  相似文献   

8.
鄂鹏  段萍  魏立秋  白德宇  江滨浩  徐殿国 《物理学报》2010,59(12):8676-8684
真空背压的变化会改变进入霍尔推力器放电通道内的背景气体量,对工质的电离、电子的传导等物理过程产生影响,从而进一步影响到推力器的宏观放电特性.为分析真空背压对推力器放电的影响规律,通过向真空罐输入流量可控的氪气改变真空背压,在不同真空背压下测量通道内原子、离子的发光特性以及出口处离子流的伏安特性.分析结果表明:背景气体返流对通道内工质放电过程具有全局性的影响,提高背压会使通道内的电子温度降低、电离效率降低,并会在通道内形成一个新的电离区,且背压越高,该电离区距推力器阳极越近.  相似文献   

9.
The existing scaling theories of Hall thrusters are based on the hypothesis of a one‐dimensional straight magnetic field, which is not suitable for the design of modern thrusters with a two‐dimensional curved magnetic field. In this paper, using the equation analysis method, we derive new similarity criterions in a curved magnetic field by analyzing the momentum equations of charged particles; consequently, we propose a new modeling design method for Hall thrusters with a constant discharge voltage. This method is further validated by experiments. A designed model with a power of 1.5 kW is made based on our proposed method from a prototype model with a power of 1 kW. The experimental results demonstrate that these two thrusters have little differences in performance and physical processes as expected from the scaling. Therefore, our method is well suited for designing a Hall thruster with a curved magnetic field (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
《Physics letters. A》2019,383(19):2272-2276
Magnetic field design is important in cylindrical Hall thrusters and using permanent magnets to generate magnetic field is very promising in the future. In two typical permanent magnet configurations (i.e., ring and cylindrical configurations) of cylindrical Hall thrusters, discharge characteristics are compared in this paper through the experiments and simulations. The study shows that the cylindrical configuration can bring about higher thruster performance in the same working condition. The reason is that the potential drop of the cylindrical configuration is mainly concentrated in the channel, which is beneficial for the electrons to obtain energy to promote the ionization of the propellant. However, the voltage regulation range of the cylindrical configuration is lower because the anode is more easily overheated.  相似文献   

11.
The scaling design of Hall effect thrusters is based on similarity criteria. Up to now, few of the similarity criteria proposed concern about the inside physical processes of the thruster except Melikov‐Morozov similarity criterion which embodies the ionization of propellant. As many other significant processes, such as electron conduction, ion acceleration and energy exchange, are out of consideration, it is far from enough to direct the thruster design appropriately at present. Therefore, in this paper, we have deduced out many new similarity criteria by analyzing the neutral continuity equation, the ion/electron momentum equations and the electron energy equation with the equation analysis method. By further comparing the magnitudes of source terms of those equations, we obtain certain similarity criteria which are primary and should be guaranteed for modeling design of thrusters. These dominant similarity criteria are finally verified in experiments (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
《Physics letters. A》1996,222(6):409-414
Low-frequency (ωωpi) plasma oscillations in the transition regime between the high and the low current mode of a thermionic hot-cathode discharge are investigated experimentally. This type of current oscillation often shows chaotic dynamics. The current oscillations are related to nonlinear short wavelength potential structures which are identified as ion bunches formed by a fluctuating ionization front. These ion bunches are separated by ion holes and move at ion thermal speed rather than ion acoustic speed. By entering the negative space charge region of the cathode sheath, the ion bunches trigger electron current fluctuations that provide the required feedback mechanism for the observed wave train formation.  相似文献   

13.
14.
The relation between magnetic field topography and operating voltage is investigated in a 1kW Hall thruster discharge channel in order to focus the ion beam effectively and optimize the performance. The curvature of magnetic field line (α) is introduced to characterize the differences of topologies. The optimized magnetic field distribution under each operating voltage is obtained by experiment. Through the curvature transformation, we find that the area of (α > 1) in the channel gradually decreases with the increase of the operating voltage. In response to the results above, two dimensional plasma flows are simulated employing Particle‐in‐Cell method. The distributions of the electric potential, ion density and ion radial velocity are calculated to understand the important influence of the relation above on ion beam focusing. The numerical results indicate that magnetic field curvature and thermal electric field control the ion beam in the ionization and acceleration zone, respectively. The magnetic field topography and discharge voltage interact with each other and together form the focusing electric field. The ion radial mobility is suppressed effectively and the ion beam is focused to the channel centerline. In addition, for a given voltages, when the area of (α > 1) is larger than the optimal scope, the electric potential lines excessively bend to the anode causing ion over focus; contrarily, the electric potential lines will bend to the exit and defocus ions. All these results suggest the relation between magnetic field topography and discharge voltage is important to the ion radial flow control and performance optimization of the Hall thruster (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Magneto-acoustic waves generated by fluctuations in the Hall parameter, the electric conductivity and the stream velocity are theoretically investigated in a weakly ionized plasma streaming across a strong external magnetic field and bearing a current flowing perpendicular to both magnetic field and stream velocity. The investigations hold for seeded rare gas plasmas at any degree of seed ionization but are resticted to waves propagating in parallel or antiparallel direction to the current density vector and in parallel or antiparallel direction to the stream velocity vector and to wave lengths which are small in comparsion to the interaction length which occurs as a characteristic wave length. The influence of these waves on the mean current density and the mean Hall field intensity is calculated in case of small amplitudes and low degree of seed ionization up to second order terms. Omitting Ohmic heating the dispersion equation can be solved exactly. A phase shift exists between the fluctuations in gas density and gas velocity. The phase velocity and the amplification rate depend on the wave length. Typical results are represented in a diagram. For both types of waves the phase velocity slightly rises with increasing wave length, while the amplification rate decreases. Waves propagating in opposite direction to the current density vector are amplified, if the electron velocity exceeds a critical value. They reduce the mean current density and the mean Hall field intensity. Waves propagating in opposite direction to the stream velocity vector are also amplified except for very high degrees of seed ionization. The threshold current density is greater than that for the waves of the first type approximately by the Hall parameter as factor. At extremely high degree of seed ionization the phase velocity is directed opposite to the direction occuring at weakly ionized seed. Waves of the second type decrease the mean current density, but increase the mean Hall field intensity.  相似文献   

16.
Quantum magnetic oscillations in SrTiO3/LaAlO3 interface are observed in the magnetoresistance. We study their frequency as a function of gate voltage and the evolution of their amplitude with temperature. The data are consistent with the Shubnikov-de Haas theory. The Hall resistivity ρ(xy) is nonlinear at low magnetic fields. ρ(xy) is fitted assuming multiple carrier contributions. We infer the density of the mobile charge carriers from the oscillations frequency and from Hall measurements. The comparison between these densities suggests multiple valley and spin degeneracy. The small amplitude of the oscillation is discussed in the framework of the multiple band scenario.  相似文献   

17.
The plasma parameters such as electron density, effective electron temperature, plasma potential, and uniformity are investigated in a new dual‐frequency cylindrical inductively coupled plasma (ICP) source operating at two frequencies (2 and 13.56 MHz) and two antennas (a two‐turn high‐frequency antenna and a six‐turn low‐frequency (LF) antenna). It is found that the electron density increases with 2 MHz power, whereas the electron temperature and plasma potential decrease with 2 MHz power at a fixed 13.56 MHz power. Moreover, the plasma uniformity can be improved by adjusting the LF power. These results indicate that a dual‐frequency synergistic discharge in a cylindrical ICP can produce a high‐density, low‐potential, low‐effective‐electron‐temperature, and uniform plasma.  相似文献   

18.
Effects of plasma nonextensivity on the nonlinear cnoidal ion‐acoustic wave in unmagnetized electron‐positron‐ion plasma have been investigated theoretically. Plasma positrons are taken to be Maxwellian, while the nonextensivity distribution function was used to describe the plasma electrons. The known reductive perturbation method was employed to extract the KdV equation from the basic equations of the model. Sagdeev potential, as well as the cnoidal wave solution of the KdV equation, has been discussed in detail. We have shown that the ion‐acoustic periodic (cnoidal) wave is formed only for values of the strength of nonextensivity (q). The q allowable range is shifted by changing the positron concentration (p) and the temperature ratio of electron to positron (σ). For all of the acceptable values of q, the cnoidal ion‐acoustic wave is compressive. Results show that ion‐acoustic wave is strongly influenced by the electron nonextensivity, the positron concentration, and the temperature ratio of electron to positron. In this work, we have investigated the effects of q, p, and σ on the characteristics of the ion‐acoustic periodic (cnoidal) wave, such as the amplitude, wavelength, and frequency.  相似文献   

19.
Graphene‐based phosphorus‐doped carbon (GPC) is prepared through a facile and scalable thermal annealing method by triphenylphosphine and graphite oxide as precursor. The P atoms are successfully doped into few layer graphene with two forms of P–O and P–C bands. The GPC used as anode material for Na‐ion batteries delivers a high charge capacity 284.8 mAh g?1 at a current density of 50 mA g?1 after 60 cycles. Superior cycling performance is also shown at high charge?discharge rate: a stable charge capacity 145.6 mAh g?1 can be achieved at the current density of 500 mA g?1 after 600 cycles. The result demonstrates that the GPC electrode exhibits good electrochemical performance (higher reversible charge capacity, super rate capability, and long‐term cycling stability). The excellent electrochemical performance originated from the large interlayer distance, large amount of defects, vacancies, and active site caused by P atoms doping. The relationship of P atoms doping amount with the Na storage properties is also discussed. This superior sodium storage performance of GPC makes it as a promising alternative anode material for sodium‐ion batteries.  相似文献   

20.
New method of disturbance by imposing harmonic signals on discharge current in DC glow discharge with ordered structures is studied at low values of disturbing amplitudes in molecular nitrogen. Influence of disturbing signals with frequencies from 10 Hz to 100 kHz is observed. New effects of changing vertical size and position of dusty structures in discharge space observed. Forced oscillations of dust particles and self‐oscillating crystals stabilizing effect under different conditions registered. Studied dusty structure's vertical size change dependencies on frequency and amplitude of disturbing signal (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号