共查询到20条相似文献,搜索用时 31 毫秒
1.
Determination of N‐nitrosamines by automated dispersive liquid–liquid microextraction integrated with gas chromatography and mass spectrometry 下载免费PDF全文
Mousa Amayreh Basheer Chanbasha Khalid Alhooshani Nuhu Dalhat Mu'azu Hian Kee Lee 《Journal of separation science》2015,38(10):1741-1748
An automated dispersive liquid–liquid microextraction integrated with gas chromatography and mass spectrometric procedure was developed for the determination of three N‐nitrosamines (N‐nitroso‐di‐n‐propylamine, N‐nitrosopiperidine, and N‐nitroso di‐n‐butylamine) in water samples. Response surface methodology was employed to optimize relevant extraction parameters including extraction time, dispersive solvent volume, water sample pH, sodium chloride concentration, and agitation (stirring) speed. The optimal dispersive liquid–liquid microextraction conditions were 28 min of extraction time, 33 μL of methanol as dispersive solvent, 722 rotations per minute of agitation speed, 23% w/v sodium chloride concentration, and pH of 10.5. Under these conditions, good linearity for the analytes in the range from 0.1 to 100 μg/L with coefficients of determination (r2) from 0.988 to 0.998 were obtained. The limits of detection based on a signal‐to‐noise ratio of 3 were between 5.7 and 124 ng/L with corresponding relative standard deviations from 3.4 to 5.9% (n = 4). The relative recoveries of N‐nitroso‐di‐n‐propylamine, N‐nitrosopiperidine, and N‐nitroso di‐n‐butylamine from spiked groundwater and tap water samples at concentrations of 2 μg/L of each analyte (mean ± standard deviation, n = 3) were (93.9 ± 8.7), (90.6 ± 10.7), and (103.7 ± 8.0)%, respectively. The method was applied to determine the N‐nitrosamines in water samples of different complexities, such as tap water, and groundwater, before and after treatment, in a local water treatment plant. 相似文献
2.
Kazutaka Shimbo Shintaro Kubo Yushi Harada Takashi Oonuki Takefumi Yokokura Hiroo Yoshida Michiko Amao Mina Nakamura Naoko Kageyama Junko Yamazaki Shin‐ichi Ozawa Kazuo Hirayama Toshihiko Ando Junkichi Miura Hiroshi Miyano 《Biomedical chromatography : BMC》2010,24(7):683-691
An automated method for high‐throughput amino acid analysis, using precolumn derivatization high‐performance liquid chromatography/electrospray mass spectrometry (HPLC/ESI‐MS), was developed and evaluated. The precolumn derivatization step was performed in the reaction port of a home‐built auto‐sampler system. Amino acids were derivatized with 3‐aminopyridyl‐N‐hydroxysuccinimidyl carbamate, and a 3 μm Wakosil‐II 3C8‐100HG column (100 × 2.1 mm i.d.) was used for separation. To achieve a 13 min cycle for each sample, the derivatization and separation steps were performed in parallel. The results of the method evaluation, including the linearity, and the intra‐ and inter‐precision, were sufficient to measure physiological amino acids in human plasma samples. The relative standard deviations of typical amino acids in actual human plasma samples were below 10%. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
3.
Xue‐qin Zhao Sheng Guo Hui Yan You‐yuan Lu Fang Zhang Da‐wei Qian Han‐qing Wang Jin‐ao Duan 《Biomedical chromatography : BMC》2019,33(8)
The leaves of Lycium barbarum (LLB) have been utilized as crude drugs and functional tea for human health in China and Southeast Asia for thousands of years. To control its quality, a rapid and sensitive ultra‐high‐performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry method was established and validated for the first time for simultaneous determination of 10 phenolic acids and flavonoids (including neochlorogenic acid , protocatechuic aldehyde, p‐hydroxybenzoic acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid, p‐coumaric acid, ferulic acid, rutin and kaempferol‐3‐O‐rutinoside) in LLB. The separation was performed on an Acquity UPLC C18 chromatographic column (100 × 2.1 mm internal diameter, 1.7 μm particle size) with 0.1% formic acid in water (A)–acetonitrile (B) as the mobile phase under gradient elution. Multiple reaction monitoring mode was adopted to simultaneously monitor the target components. The developed method was fully validated in terms of linearity (r2 ≥ 0.9860), precision (RSD ≤ 6.58%), repeatability (RSD ≤ 6.60%), stability (RSD ≤ 6.17%), recovery (95.56–108.06%, RSD ≤ 4.64%) and limit of detection (0.021–0.664 ng/mL) and limit of quantitation (0.069–2.210 ng/mL), and then successfully applied to evaluate the quality of 64 batches of LLB collected from 41 producing areas in four different provinces of China. The results showed that the LLB, especially collected from Inner Mongolia regions, were rich in the phenolic acids and flavonoids. Rutin, kaempferol‐3‐O‐rutinoside and chlorogenic acid are the predominant compounds contained in LLB. The above findings will provide helpful information for the effective utilization of LLB. 相似文献
4.
Speciation of methyltins by dispersive liquid–liquid microextraction and gas chromatography with mass spectrometry 下载免费PDF全文
Dispersive liquid–liquid microextraction in combination with an in situ derivatization is suggested for methyltin compound sampling and preconcentration from water solutions. The derivatization was carried out with sodium tetraethylborate at pH 3. The effects of extraction and disperser solvents type, volume, and extraction time on the extraction efficiency were investigated. 1,2‐Dichlorobenzene was used as an extraction solvent and ethanol was used as a disperser solvent. The calibration graphs for all the analytes were linear up to 2 μg (Sn) L?1, correlation coefficients were 0.998–0.999, LODs were 0.13, 0.05, and 0.06 ng (Sn) L?1 for trimethyltin, DMT, and monomethyltin, respectively. Repeatabilities of the results were acceptable with RSDs up to 12.1%. A possibility to apply the proposed method for methyltin compound determination in water samples was demonstrated. 相似文献
5.
Determination of three antidepressants in urine using simultaneous derivatization and temperature‐assisted dispersive liquid–liquid microextraction followed by gas chromatography–flame ionization detection 下载免费PDF全文
Ali Akbar Alizadeh Nabil Nina Nouri Mir Ali Farajzadeh 《Biomedical chromatography : BMC》2015,29(7):1094-1102
This paper presents a fast and simple method for the extraction, preconcentration and determination of fluvoxamine, nortriptyline and maprotiline in urine using simultaneous derivatization and temperature‐assisted dispersive liquid–liquid microextraction (TA‐DLLME) followed by gas chromatography–flame ionization detection (GC‐FID). An appropriate mixture of dimethylformamide (disperser solvent), 1,1,2,2‐tetrachloroethane (extraction solvent) and acetic anhydride (derivatization agent) was rapidly injected into the heated sample. Then the solution was cooled to room temperature and cloudy solution formed was centrifuged. Finally a portion of the sedimented phase was injected into the GC‐FID. The effect of several factors affecting the performance of the method, including the selection of suitable extraction and disperser solvents and their volumes, volume of derivatization agent, temperature, salt addition, pH and centrifugation time and speed were investigated and optimized. Figures of merit of the proposed method, such as linearity (r2 > 0.993), enrichment factors (820–1070), limits of detection (2–4 ng mL?1) and quantification (8–12 ng mL?1), and relative standard deviations (3–6%) for both intraday and interday precisions (concentration = 50 ng mL?1) were satisfactory for determination of the selected antidepressants. Finally the method was successfully applied to determine the target pharmaceuticals in urine. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
6.
《Journal of separation science》2017,40(20):4050-4059
A readily applicable method was developed to determine the concentration level of zaltoprofen, a non‐steroidal antiinflammatory drug from the propionic acid family, in human plasma. This method is based on manual‐shaking‐assisted dispersive liquid–liquid microextraction coupled with liquid chromatography with ultraviolet detection. Factors affecting the extraction efficiency were screened and optimized by experimental design using fractional factorial and central composite designs, respectively. Optimal conditions were: 220 μL of C2H4Cl2 (extraction solvent), 5 mL of 3.75% w/v NaCl aqueous solution at pH 2.0, and manual shaking for 13 s (65 times). The resulting extraction method yielded a reasonable enrichment factor of 18.0 (±0.6, n = 3) and extraction recovery of 86.0% (±3.3%, n = 3). The established method was validated for selectivity, linearity, precision, accuracy, matrix effect, recovery, dilution integrity, and stability, and it met the acceptable criteria for all of the tested parameters. Specifically, the method was linear in the range of 0.16–50.0 mg/L, precise (< 8.8% RSD), accurate (–7.5–5.6% deviation), and showed negligible matrix effects (96.1–106.4%) with high absolute recovery (94.5–97.7%). Compared with previous methods involving labor‐intensive liquid–liquid extraction or non‐specific protein precipitation, our method allows the simple, rapid, and efficient determination of zaltoprofen using the most affordable analytical instrument, liquid chromatography with ultraviolet detection. 相似文献
7.
Trace analysis of herbicides in wastewaters by a dispersive liquid–liquid microextraction approach and liquid chromatography with quadrupole linear ion trap mass spectrometry: Evaluation of green parameters 下载免费PDF全文
Maria del Mar Parrilla Vázquez Maria Martínez Galera Piedad Parrilla Vázquez Ana Uclés Moreno 《Journal of separation science》2014,37(12):1511-1520
An analytical method for determining phenylureas (monuron, isoproturon, diuron, linuron and neburon) and propanil herbicides in wastewater has been developed and validated, and the most significant parameters were compared with the corresponding ones found in the literature, thus showing the method performance. The method involves pre‐concentration by a simple, rapid, sensitive and low environmental toxicity temperature‐controlled ionic liquid dispersive liquid–liquid microextraction procedure. The herbicides were identified and determined by liquid chromatography with a hybrid triple quadrupole linear ion trap mass spectrometer. Data acquisition in selected‐reaction monitoring mode allowed the simultaneous identification and quantification of the analytes using two transitions. The information dependent acquisition scan was performed to carry out the identification of those analytes whose second transition was present at low intensity, also providing extra confirmation for the other analytes. Limits of quantification were in the range 1.0–5.0 ng/L. Good recoveries (95–103%) were obtained for the extraction of the target analytes in wastewater samples. The methodology developed was applied to analyze effluent wastewater samples from a wastewater treatment plant located in an agricultural zone of Almería (Spain) and the results indicated the presence of diuron at mean concentration levels of 73.5 ng/L. 相似文献
8.
Augusto C. V. Neves Junior Armindo Melo Carina Pinho Regina C. C. Coneglian Antnio G. Soares Isabel M. P. L. V. O. Ferreira 《Journal of Chemometrics》2014,28(9):716-724
Cyanamide is widely used for agricultural purposes; therefore, its residues can be found in water. A new method was developed for its quantification using in situ derivatization with 2,6‐dimethyl‐4‐quinolinecarboxylic acid N‐hydroxysuccinimide ester followed by dispersive liquid–liquid microextraction (DLLME) and high‐performance liquid chromatography/fluorescence analysis. Multivariate chemometric techniques were successfully used to obtain the optimum conditions for direct derivatization and DLLME extraction. Derivatization parameters and DLLME extraction conditions were optimized by a two‐step design, 2k factorial design for screening, and central composite design for optimization. Best derivatization conditions were addition of 600 μL of derivatizing reagent, a temperature of 4 ºC, and pH 8.5, whereas for optimum extraction 800 μL of solvent, 30% NaCl conc. w/v, and pH 3.8 were chosen. The analytical performance of the method for routine analysis was evaluated. Excellent linearity was achieved from 10 to 200 µg L−1 with a correlation factor of 0.9996. Precision ranged from 3.5% to 5.5% for intraday assays and 8.5% to 8.6% for interday assays. The mean recoveries performed on water from different origins (ground, river, sea, tap, and mineral) at three levels of concentration (20, 75, and 200 µg L−1) ranged from 90.2% to 110.2%. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
9.
Mohammad Saraji Narges Mehrafza Ali Akbar Hajialiakbari Bidgoli Mohammad Taghi Jafari 《Journal of separation science》2012,35(19):2637-2644
A method was established for the determination of desipramine in biological samples using liquid–liquid–liquid microextraction followed by in‐syringe derivatization and gas chromatography–nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n‐Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2–20 μg/L (r2 = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine. 相似文献
10.
《Journal of separation science》2018,41(15):3081-3088
An ionic‐liquid‐based in situ dispersive liquid–liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7–10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values. 相似文献
11.
《Journal of separation science》2018,41(15):3143-3151
A new analytical method for the simultaneous determination of trace levels of seven prohibited N‐nitrosamines (N‐nitrosodimethylamine, N‐nitrosoethylmethylamine, N‐nitrosopyrrolidine, N‐nitrosodiethylamine, N‐nitrosopiperidine, N‐nitrosomorpholine, and N‐nitrosodiethanolamine) in cosmetic products has been developed. The method is based on vortex‐assisted reversed‐phase dispersive liquid–liquid microextraction, which allows the extraction of highly polar compounds, followed by liquid chromatography with mass spectrometry. The variables involved in the extraction process were studied to obtain the highest enrichment factor. Under the selected conditions, 75 μL of water as extraction solvent was added to 5 mL of n‐hexane sample solution and assisted by vortex mixing during 30 s to form the cloudy solution. The method was successfully validated showing good linearity (0.5–50 ng/mL), enrichment factors up to 65 depending on the target compound, limits of detection values of 1.8–50 ng/g, and good repeatability (RSD < 9.8%). Finally, the proposed method was applied to different cosmetic samples. Quantitative relative recovery values (80–113%) were obtained, thus showing that matrix effects were negligible. The achieved analytical features of the proposed method, besides of its simplicity and affordability, make it useful to perform the quality control of cosmetic products to ensure the safety of consumers. 相似文献
12.
Hatem Elmongy Hytham Ahmed Abdel‐Aziz Wahbi Ahmad Amini Anders Colmsjö Mohamed Abdel‐Rehim 《Biomedical chromatography : BMC》2016,30(8):1309-1317
A sensitive, accurate and reliable bioanalytical method for the enantioselective determination of metoprolol in plasma and saliva samples utilizing liquid chromatography–electrospray ionization tandem mass spectrometry was developed and validated. Human plasma and saliva samples were pretreated by microextraction by packed sorbent (MEPS) prior to analysis. A new MEPS syringe form with two inputs was used. Metoprolol enantiomers and internal standard pentycaine (IS) were eluted from MEPS sorbent using isopropanol after removal of matrix interferences using aliquots of 5% methanol in water. Complete separation of metoprolol enantiomers was achieved on a Cellulose‐SB column (150 × 4.6 mm, 5 μm) using isocratic elution with mobile phase 0.1% ammonium hydroxide in hexane–isopropanol (80:20, v/v) with a flow rate of 0.8 mL/min. A post‐column solvent‐assisted ionization was applied to enhance metoprolol ionization signal in positive mode monitoring (+ES) using 0.5% formic acid in isopropanol at a flow rate of 0.2 mL/min. The total chromatographic run time was 10 min for each injection. The detection of metoprolol in plasma and saliva samples was performed using triple quadrupole tandem mass spectrometer in +ES under the following mass transitions: m/z 268.08 → 72.09 for metoprolol and m/z 303.3 → 154.3 for IS. The linearity range was 2.5–500 ng/mL for both R‐ and S‐metoprolol in plasma and saliva. The limits of detection and quantitation for both enantiomers were 0.5 and 2.5 ng/mL respectively, in both matrices (plasma and saliva). The intra‐ and inter‐day precisions were presented in terms of RSD values for replicate analysis of quality control samples and were <5%; the accuracy of determinations varied from 96 to 99%. The method was able to determine the therapeutic levels of metoprolol enantiomers in both human plasma and saliva samples successfully, which can aid in therapeutic drug monitoring in clinical laboratories. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
Simultaneous determination of six synthetic phenolic antioxidants in edible oils using dispersive liquid–liquid microextraction followed by high‐performance liquid chromatography with diode array detection 下载免费PDF全文
Shuangjiao Xu Liangliang Liu Yanqin Wang Dayun Zhou Meng Kuang Dan Fang Weihua Yang Shoujun Wei Lei Ma 《Journal of separation science》2016,39(16):3205-3211
A simple, rapid, organic‐solvent‐ and sample‐saving pretreatment technique, called dispersive liquid–liquid microextraction, was developed for the determination of six synthetic phenolic antioxidants from edible oils before high‐performance liquid chromatography with diode array detection. The entire procedure was composed of a two‐step microextraction and a centrifugal process and could be finished in about 5 min, only consuming only 25 mg of sample and 1 mL of the organic solvent for each extraction. The influences of several important parameters on the microextraction efficiency were thoroughly investigated. Recovery assays for oil samples were spiked at three concentration levels, 50, 100 and 200 mg/kg, and provided recoveries in the 86.3–102.5% range with a relative standard deviation below 3.5%. The intra‐day and inter‐day precisions for the analysis were less than 3.8%. The proposed method was successfully applied for the determination of synthetic phenolic antioxidants in different oil samples, and satisfactory results were obtained. Thus, the developed method represents a viable alternative for the quality control of synthetic phenolic antioxidant concentrations in edible oils. 相似文献
14.
Selenium speciation in tea by dispersive liquid–liquid microextraction coupled to high‐performance liquid chromatography after derivatization with 2,3‐diaminonaphthalene 下载免费PDF全文
Qingxiang Zhou Man Lei Jing Li Mengyun Wang Danchen Zhao An Xing Kuifu Zhao 《Journal of separation science》2015,38(9):1577-1583
Selenium is an important element for human health, and it is present in many natural drinks and foods. Present study described a new method using dispersive liquid–liquid microextraction prior to high‐performance liquid chromatography with a UV variable wavelength detector for the determination of the total selenium, Se(IV), Se(VI), and total organoselenium in tea samples. In the procedure, 2,3‐diaminonaphthalene was used as the chelating reagent, 400 μL acetonitrile was used as the disperser solvent and 60 μL chlorobenzene was used as the extraction solvent. The complex of Se(IV) and 2,3‐diaminonaphthalene in the final extracted phase was analyzed by high‐performance liquid chromatography. The factors influencing the derivatization and microextraction were investigated. Under the optimal conditions, the limit of detection was 0.11 μg/L for Se(IV) and the linearity range was in the range of 0.5–40 μg/L. This method was successfully applied to the determination of selenium in four tea samples with spiked recoveries ranging from 91.3 to 100%. 相似文献
15.
YuXi Chen Wei Chen Yan Lan KaiTeng Wang YongChen Wu XiaoLi Zhong KaiYang Ying JunYing Li GuiDi Yang 《Journal of separation science》2019,42(4):816-825
An ultra high performance liquid chromatography with triple quadrupole mass spectrometry method for the determination of free and bound phenolic acids in tobacco plant and soil was developed. A simple solid‐phase extraction, which used Polar Enhanced Polymer column as stationary phase and methanol as mobile phase, was used for the clean‐up of bound phenolic acids, and a liquid‐phase extraction using chloroform as solvent was used to purify free phenolic acids. With our method, 18 phenolic acids in rhizosphere soil of continuous cropping flue‐cured cultivar k326 were separated and determined within 6 min with recoveries of 82–107% and relative standard deviations (n = 5) of 1.1–4.8%. Results showed that free phenolic acids accounted for 0–9, 92–100, and 69–100% of total phenolic acids in rhizosphere soil, cultivar k326 roots and leaves, respectively. Results also revealed that p‐hydroxybenzoic acid, p‐coumaric acid, vanillic acid, ferulic acid, and syringic acid were the predominant phenolic acids in rhizosphere soil of cultivar k326, and continuous cropping of cultivar k326 in the same farmland could lead to the accumulation of these phenolic acids in soil except syringic acid. The determination of phenolic acids provided detailed information for evaluating their source and characteristics in continuous cropping tobacco plant and soil. 相似文献
16.
A sensitive and efficient method for trace analysis of some phenolic compounds using simultaneous derivatization and air‐assisted liquid–liquid microextraction from human urine and plasma samples followed by gas chromatography–nitrogen phosphorous detection 下载免费PDF全文
Mir Ali Farajzadeh Mohammad Reza Afshar Mogaddam Ali Akbar Alizadeh Nabil 《Biomedical chromatography : BMC》2015,29(12):1921-1931
In present study, a simultaneous derivatization and air‐assisted liquid–liquid microextraction method combined with gas chromatography–nitrogen phosphorous detection has been developed for the determination of some phenolic compounds in biological samples. The analytes are derivatized and extracted simultaneously by a fast reaction with 1‐flouro‐2,4‐dinitrobenzene under mild conditions. Under optimal conditions low limits of detection in the range of 0.05–0.34 ng mL?1 are achievable. The obtained extraction recoveries are between 84 and 97% and the relative standard deviations are less than 7.2% for intraday (n = 6) and interday (n = 4) precisions. The proposed method was demonstrated to be a simple and efficient method for the analysis of phenols in biological samples. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
《Journal of separation science》2018,41(17):3415-3423
A rapid analytical method was developed for the determination of 4‐methylimidazole from red ginseng products containing caramel colors by using dispersive liquid–liquid microextraction with in situ derivatization followed by gas chromatography with mass spectrometry. Chloroform and acetonitrile were selected as the extraction and dispersive solvents, and based on the extraction efficiency, their optimum volumes were 200 and 100 μL, respectively. The optimum volumes of the derivatizing agent (isobutyl chloroformate) and catalyst (pyridine), pH, and concentration of NaCl in the sample solution were determined to be 25 and 100 μL, pH 7.6, and 0% w/v, respectively. Validation of the optimized method showed good linearity (R2 > 0.999), accuracy (≥89.86%), intra‐ (≤6.70%) and interday (≤4.17%) repeatability, limit of detection (0.96 μg/L), and limit of quantification (5.79 μg/L). The validated method was applied to quantify 4‐methylimidazole in red ginseng juices and concentrates, 4‐methylimidazole was only found in red ginseng juices containing caramel colorant (42.91–2863.4 μg/L) and detected in red ginseng concentrates containing >1% caramel colorant. 相似文献
18.
Three‐phase hollow fiber liquid‐phase microextraction based on a magnetofluid for the analysis of aristolochic acids in plasma by high‐performance liquid chromatography 下载免费PDF全文
A new and fast sample preparation technique based on three‐phase hollow fiber liquid‐phase microextraction with a magnetofluid was developed and successfully used to quantify the aristolochic acid I (AA‐I) and AA‐II in plasma after oral administration of Caulis akebiae extract. Analysis was accomplished by reversed‐phase high‐performance liquid chromatography with fluorescence detection. Parameters that affect the hollow fiber liquid‐phase microextraction processes, such as the solvent type, pH of donor and acceptor phases, content of magnetofluid, salt content, stirring speed, hollow fiber length, extraction temperature, and extraction time, were investigated and optimized. Under the optimized conditions, the preconcentration factors for AA‐I and AA‐II were >627. The calibration curve for two AAs was linear in the range of 0.1–10 ng/mL with the correlation coefficients >0.9997. The intraday and interday precision was <5.71% and the LODs were 11 pg/mL for AA‐I and 13 pg/mL for AA‐II (S/N = 3). The separation and determination of the two AAs in plasma after oral administration of C. akebiae extract were completed by the validated method. 相似文献
19.
In‐syringe‐assisted dispersive liquid–liquid microextraction coupled to gas chromatography with mass spectrometry for the determination of six phthalates in water samples 下载免费PDF全文
Sabrina Clavijo María del Rosario Brunetto Víctor Cerdà 《Journal of separation science》2014,37(8):974-981
A fully automated method for the determination of six phthalates in environmental water samples is described. It is based in the novel sample preparation concept of in‐syringe dispersive liquid–liquid microextraction, coupled as a front end to GC–MS, enabling the integration of the extraction steps and sample injection in an instrumental setup that is easy to operate. Dispersion was achieved by aspiration of the organic (extractant and disperser) and the aqueous phase into the syringe very rapidly. The denser‐than‐water organic droplets released in the extraction step, were accumulated at the head of the syringe, where the sedimented fraction was transferred to a rotary micro‐volume injection valve where finally was introduced by an air stream into the injector of the GC through a stainless‐steel tubing used as interface. Factors affecting the microextraction efficiency were optimized using multivariate optimization. Figures of merit of the proposed method were evaluated under optimal conditions, achieving a detection limit in the range of 0.03–0.10 μg/L, while the RSD% value was below 5% (n = 5). A good linearity (0.9956 ≥ r2 ≥ 0.9844) and a broad linear working range (0.5–120 μg/L) were obtained. The method exhibited enrichment factors and recoveries, ranging from 14.11–16.39 and 88–102%, respectively. 相似文献
20.
《Journal of separation science》2017,40(22):4403-4410
A new method was developed for the trace determination of phthalic acid esters in plasma using dispersive liquid–liquid microextraction and gas chromatography with mass spectrometry analysis. Plasma proteins were efficiently precipitated by trichloroacetic acid and then a mixture of chlorobenzene (as extraction solvent) and acetonitrile (as dispersive solvent) rapidly injected to clear supernatant using a syringe. After centrifuging, chlorobenzene sedimented at the bottom of the test tube. 1 μL of this sedimented phase was injected into the gas chromatograph for phthalic acid esters analysis. Different factors affecting the extraction performance, such as the type of extraction and dispersive solvent, their volume, extraction time, and the effects of salt addition were investigated and optimized. Under the optimum conditions, the enrichment factors and extraction recoveries were satisfactory and ranged between 820–1020 and 91–97%, respectively. The linear range was wide (50–1000 ng/mL) and limit of detection was very low (1.5–2.5 ng/mL for all analytes). The relative standard deviations for analysis of 1 μg/mL of the analytes were between 3.2–6.1%. Salt addition showed no significant effect on extraction recovery. Finally, the proposed method was successfully utilized for the extraction and determination of the phthalic acid esters in human plasma samples and satisfactory results were obtained. 相似文献