首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The cyclization of 1‐amino‐2‐mercapto‐5‐[1‐(4‐ethoxyphenyl)‐5‐methyl‐1,2,3‐triazol‐4‐yl]‐1,3,4‐triazole which was synthesized from p‐ethoxyaniline with various triazole acid in absolute phosphorus oxychloride yields 3,6‐bis(1,2,3‐triazolyl)‐s‐triazolo[3,4‐b]‐1,3,4‐thiadiazole derivatives 9a?j , and their structures are established by MS, IR, CHN and 1H NMR spectral data.  相似文献   

2.
The cyclization of 1‐amino‐2‐mercapto‐5‐[5‐methyl‐1‐(4‐methylphenyl)‐1,2,3‐triazol‐4‐yl]‐1,3,4‐triazole with various α‐haloketone in absolute ethanol yields 7H‐3‐[5‐methyl‐1‐(4‐methylphenyl)‐1,2,3‐triazol‐4‐yl]‐6‐substituted‐s‐triazolo[3,4‐b]‐1,3,4‐thiadiazines and their structures are established by elemental analysis, MS, IR and 1H NMR spectral data.  相似文献   

3.
The reaction of thionyl chloride with the semicarbazone 2 gave 4,5‐dihydro‐6,9‐dihydroxynaphtho‐[1,2‐d][1,2,3]thiadiazole ( 3 ) instead of 4,5‐dihydro‐6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]thiadiazole ( 4 ). Selenium dioxide oxidation of compound 2 gave 4,5‐dihydro‐6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]selenadiazole ( 5 ). Oxidation of compound 5 with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone afforded 6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]selenadiazole ( 6 ).  相似文献   

4.
The 7‐chloro‐3‐(2‐chlorobenzyl)‐ and 7‐chloro‐3‐(2‐fluorobenzyl)‐1,2,3‐triazolo[4,5‐d]pyrimidines ( 1 and 4 ), by nucleophilic replacement with some hydrazides, gave the corresponding 7‐hydrazidoderivatives ( 2a‐e and 5a‐e ). These, by heating in Dowtherm, underwent an intramolecular cyclization to form the new tricyclic 7‐substituted‐3‐(2‐chlorobenzyl)‐ and 3‐(2‐fluorobenzyl)‐1,2,3‐triazolo[4,5‐e]1,2,4‐triazolo[4,3‐c]pyrimidines ( 3a‐d and 6a‐d ). The 7‐hydrazino‐3‐(2‐chlorobenzyl)‐ and 7‐hydrazino‐3‐(2‐fluorobenzyl)‐triazolo‐pyrimidines ( 9a and 9b ) were also prepared via the corresponding mercapto ( 7a and 7b ) and thiomethyl ( 8a and 8b ) derivatives.  相似文献   

5.
The many fold aromatic ketones 2a‐d are versatile compounds for the synthesis of the many fold 1,2,3‐selenadiazole aromatic derivatives 5a‐d . The preparation starts with the reaction between the many fold bromomethylene benzene derivatives 1a‐d and 4‐hydroxyacetophenone, which are transformed through the reaction with semicarbazide hydrochloride or ethylhydrazine carboxylate into the corresponding semicarbazones derivatives 3a‐d or hydrazones 4a‐d . The reaction with selenium dioxide leads to regiospecific ring closure of semicarbazones or hydrazones to give the many fold 1,2,3‐selenadiazole aromatic derivatives in high yield.  相似文献   

6.
This paper presents the synthesis of a series of 5,6‐dihydro‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ring system derivatives with a [1,2,3]triazole ring bonded in position 2. The procedure is based on cycloaddition of substituted alkyl azides to the terminal triple bond of 5,6‐dihydro‐2‐ethynyl‐9‐methyl‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 4 ). This cycloaddition produced two regioisomers ?5,6‐dihydro‐9‐methyl‐2‐(1‐substituted‐1H‐[1,2,3]triazol‐5‐yl)‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 7 ) and 2‐(1‐substituted‐1H‐[1,2,3]triazol‐4‐yl) derivative 8 . The required 2‐ethynyl deriva tive 4 was obtained from the starting 2‐unsubstituted compound 1 by bromination to yield the 2‐bromo derivative 2 , which was converted by Sonogashira reaction to trimethylsilylethyne 3 and finally, the protective trimethylsilyl group was removed by hydrolysis.  相似文献   

7.
Previously unknown azomethylene derivatives of 4‐chloro‐5H‐1,2,3‐dithiazole 5–7 were synthesized by the reaction of the Appel salt 1 with N‐monosubstituted hydrazones 2–4. It was shown that they could be transformed into heterocyclic compounds 8–10.  相似文献   

8.
N? C bonded (non‐bridged) 5‐(1,2,3‐triazol‐1‐yl)tetrazoles were synthesized by the CuI‐catalyzed 1,3‐dipolar azide–alkyne cycloaddition click reaction using 5‐azido‐N‐(propan‐2‐ylidene)‐1H‐tetrazole ( 1 ). For example, the click reaction of 1 in the presence of CuSO4?5 H2O and Na ascorbate at 65–70 °C for 48 h in CH3CN/H2O co‐solvent was found to be limited to only terminal alkynes that have electron‐withdrawing groups, CF3C?CH ( 2 a ) and SF5C?CH ( 2 b ), giving rise to isopropylidene‐[5‐(4‐trifluoromethyl‐1,2,3‐triazol‐1‐yl)tetrazol‐1‐yl]amine ( 3 a ) and isopropylidene‐[5‐(4‐pentafluorosulfanyl‐1,2,3‐triazol‐1‐yl)tetrazol‐1‐yl]amine ( 3 b ) in 47 % and 66 % yields, respectively. When carried out under conditions using CuI and 2,6‐lutidine as catalysts at 0 °C for 13 h in CHCl3, the click reaction was versatile toward alkynes even those having electron‐donating groups. Properties of new products were determined and compared with those of 1 . Heats of formation, detonation pressures, detonation velocities and impact sensitivities are reported for these new 5‐(1,2,3‐triazol‐1‐yl)tetrazoles.  相似文献   

9.
A series of 1‐substituted 4,5‐diformyl‐[1,2,3]triazole derivatives were prepared by 1,3‐dipolar cyclo‐addition of aryl azides with acetylene dicarboxaldehyde mono‐diethylacetal. The triazoles were readily converted into 1‐substituted [1,2,3]triazolo[4,5‐d]pyridazines in good yields. The 1‐(2‐nitrophenyl)‐[1,2,3]triazolo[4,5‐d]pyridazine was found to be a useful intermediate for the generation of the novel 5H‐benzo[1,2,3]triazolo[1′,2′:1,2]triazolo[4,5‐d]pyridazin‐6‐ium inner salt ring system.  相似文献   

10.
The stereoselective synthesis of 1,2,3‐triazolooxazine and fused 1,2,3‐triazolo‐δ‐lactone by applying chemoenzymatic methods is described. trans‐2‐Azidocyclohexanol was successfully resolved by Novozyme 435 with an ee value of 99%. Installation of the alkyne moiety on the enantiomerically enriched azidoalcohol by O‐alkylation, followed by intramolecular azide? alkyne [3+2] cycloaddition resulted in the desired 1,2,3‐triazolooxazine derivative. Enantiomerically pure azidocyclohexanol was also subjected to the Huisgen 1,3‐dipolar cycloaddition reaction with dimethylacetylene dicarboxylate, followed by intramolecular cyclization of the corresponding cycloadduct, to furnish a fused 1,2,3‐triazolo‐δ‐lactone.  相似文献   

11.
Reactions of camphor‐1,2,3‐triazine 1 with diphenylcyclopropenone 2 gave two cycloadducts; 6,9‐methanopyrazolo[1,2‐b][1,2,3]benzotriazinones 3–4. Oxidation of 1 with 3‐chloroperbenzoic acid gave 1‐oxide 5 as the major compound along with a trace of 1,2‐dioxide 6.  相似文献   

12.
Three‐component heterocyclization of 4‐amino‐5‐carboxamido‐1,2,3‐triazole, thiopyran‐3‐one‐1,1‐dioxide, and aromatic aldehydes under ultrasonic and microwave irradiation was studied. Regardless of the reaction parameters, 5,6,7,9‐tetrahydro‐4H‐thiopyrano[3,2‐d][1,2,3]triazolo[1,5‐a]pyrimidine‐8,8‐dioxides were isolated as sole reaction products whose structures were proven with help of NMR data and X‐ray analysis.  相似文献   

13.
A synthesis of bis(α‐bromo ketones) 5a‐c and 6b,c was accomplished by the reaction of bis(acetophenones) 3a‐c and 4b,c with N‐bromosuccinimide in the presence of p‐toluenesulfonic acid (p‐TsOH). Treatment of 5a‐c and 6b,c with each of 4‐amino‐3‐mercapto‐1,2,4‐triazoles 9a,b and 4‐amino‐6‐phenyl‐3‐mercapto‐1,2,4‐triazin‐5(4H)‐ones 13 in refluxing ethanol afforded the novel bis(s‐triazolo[3,4‐b][1,3,4]thiadiazines) 10a‐d and 11a‐c as well as bis(as‐triazino[3,4‐b][1,3,4]thiadiazines) 14a‐c and 15 , respectively, in good yields. Compounds 11b and 11c underwent NaBH4 reduction in methanol to give the target 1,ω‐bis{4‐(6,7‐dihydro‐3‐substituted‐5H‐1,2,4‐triazolo[3,4‐b][1,3,4]thiadiazin‐6‐yl)phenoxy}butanes 12a and 12b in 42 and 46% yields, respectively.  相似文献   

14.
An efficient synthesis of 1,2,3‐triaroylindolizines has been developed via CuBr2‐promoted reaction of three molecules of aromatic methyl ketones and one molecule of pyridine derivative. A wide range of methyl aryl ketones and methyl heteroaryl ketones took part in the reaction and generate 1,2,3‐triaroylindolizines in good yields. This protocol also features such advantages as mild reaction conditions and high atom economy and step economy.  相似文献   

15.
In accord with the Hurd‐Mori reaction conditions, 1‐ or 2‐phosphonyl hydrazones reacted with thionyl chloride to afford 4‐ or 5‐phosphonyl 1,2,3‐thiadiazoles in good yields and purity. A synthesis of 1‐ or 2‐phosphonyl hydrazones using two methods is described. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 16:413–416, 2000  相似文献   

16.
A rhodium(III)‐catalyzed [3+2]/[5+2] annulation of 4‐aryl 1‐tosyl‐1,2,3‐triazoles with internal alkynes is presented. This transformation provides straightforward access to indeno[1,7‐cd]azepine architectures through a sequence involving the formation of a rhodium(III) azavinyl carbene, dual C(sp2)? H functionalization, and [3+2]/[5+2] annulation.  相似文献   

17.
An efficient synthesis of 1‐arylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐ones, involving the diazotization of 3‐amino‐4‐arylamino‐1H‐isochromen‐1‐ones in weakly acidic solution, has been developed and the spectroscopic characterization and crystal structures of four examples are reported. The molecules of 1‐phenylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H9N3O2, (I), are linked into sheets by a combination of C—H…N and C—H…O hydrogen bonds, while the structures of 1‐(2‐methylphenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C16H11N3O2, (II), and 1‐(3‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H8ClN3O2, (III), each contain just one hydrogen bond which links the molecules into simple chains, which are further linked into sheets by π‐stacking interactions in (II) but not in (III). In the structure of 1‐(4‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, (IV), isomeric with (III), a combination of C—H…O and C—H…π(arene) hydrogen bonds links the molecules into sheets. When compound (II) was exposed to a strong acid in methanol, quantitative conversion occurred to give the ring‐opened transesterification product methyl 2‐[4‐hydroxy‐1‐(2‐methylphenyl)‐1H‐1,2,3‐triazol‐5‐yl]benzoate, C17H15N3O3, (V), where the molecules are linked by paired O—H…O hydrogen bonds to form centrosymmetric dimers.  相似文献   

18.
Derivatives of the new ring system pyrrolo[3,4‐e][1,2,3] triazolo[1,5‐a]pyrimidine 6 were prepared in high yields in one step by reaction of 3‐azidopyrrole 3 and substituted acetonitriles. Compound 6b rearranged, upon heating in dimethyl sulfoxide in the presence of water, to pyrrolo[3,4‐d][1,2,3]triazolo‐[1,5‐a]pyrimidine 7.  相似文献   

19.
The condensation of 5‐amino‐4‐phenyl‐1,2,3‐triazole ( 1 ) with chalcones 2a‐e or 3‐dimethylamino‐propiophenone ( 4f ) leads to the 6,7‐dihydro‐(1,2,3)‐triazolo[1,5‐a]pyrimidines 3a‐f. The equilibrium of 3 and the tautomeric 4,7‐dihydro‐(1,2,3)‐triazolo[1,5‐a]pyrimidines 3′ is described.  相似文献   

20.
The reactions of α‐bromoacetophenones with methylhydrazine in refluxing acetic acid generated 2‐methyl‐4‐aryl‐2H‐[1,2,3]triazoles in good yields. The method was developed by the reactions of α‐bromoacetophenones with phenylhydrazines in the presence of cupric ion, leading to 2,4‐diary‐2H‐[1,2,3]triazoles. The structures were established on the basis of corresponding IR, 1H NMR, and elemental analysis data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号