首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel substituted (E)‐N′‐benzylidene‐4‐methyl‐2‐(2‐propylpyridin‐4‐yl)thiazole‐5‐carbohydrazide derivatives ( 6a‐l ) have been synthesized by following the multistep synthetic route starting from prothionamide. The resulting compounds were characterized via 1H, 13C NMR, and HRMS spectral data. The synthesized carbohydrazides were evaluated for their in vitro antimicrobial and antioxidant activities. Tested molecules have displayed moderate to good growth inhibition activity. Among the screened compounds, 6b , 6e , 6j, and 6k are found to be the more promising antimicrobial agents. A 2,2‐diphenyl‐1‐picrylhydrazyl assay was used to test the antioxidant activity of the carbohydrazides. The carbohydrazide derivatives 6b and 6i have shown better free‐radical scavenging ability than the other investigated compounds.  相似文献   

2.
A new series of cyclopentyl 3‐(2‐methoxy‐4‐(piperazine‐1‐carbonyl)benzyl)‐1‐methyl‐1H‐indol‐5‐ylcarbamate sulfonyl derivatives were synthesized by the reaclion of 4‐((5‐(cyclopentyloxycarbonylamino)‐1‐methyl‐1H‐indol‐3‐yl)methyl)‐3‐methoxybenzoic acid (ZAK drug intermediate) with Boc piperazine in the presence of EDC?HCl, HOBt, TEA in DMF followed by deboxylation by using 2N HCl or 35 % HCl in acetone to get an intermediate compound. Further, this compound was treated with various substituted benzene sulfonyl chlorides in the presence of TEA in THF to afford title compounds. All the title compounds were characterized by 1HNMR, 13CNMR, IR and mass spectral data. The title compounds and starting material were evaluated for their antioxidant activity by using the DPPH, H2O2 and NO methods. The results revealed that some of the compounds have shown significant antioxidant activity.  相似文献   

3.
In this study, novel Metal–free and metallophthalocyanines 3–10 were prepared by the cyclotetramerization of the new phthalonitriles 1–2 and the corresponding divalent metal salts. The novel phthalonitrile derivatives 1–2 were synthesized by the reaction between 4‐nitrophthalonitrile with 3‐hydroxycoumarin and 7‐hydroxycoumarin respectively in DMF in the presence of dry K2CO3 as base catalyst. The aggregation behavior of these compounds was investigated in different concentrations of DMSO for the Zn and Co phthalocyanines 5 , 9. In vitro antioxidant test method, namely diphenylpicrylhydrazyl radical scavenging activity, was used to determine the antioxidant activity of complexes 5–10 . In addition, these compounds were analyzed for their antibacterial activity against some bacteria by using the disk‐diffusion method. The compounds were characterized by spectral data (IR, UV–Vis, 1H‐NMR and mass spectroscopies) as well as elemental analysis.  相似文献   

4.
设计合成了4个8-羟基喹啉共轭联接芳香杂环化合物来研究它们在有机发光材料和荧光探针的潜在应用。用IR, 1H NMR, 13C NMR, MS, UV确认了这些新化合物的结构。测定了化合物1-4的荧光性质,发光衰变时间和量子产率,并用密度泛函方法研究了4个化合物的几何结构和荧光发射波长的关系。在调控骨髓间充质干细胞增殖以及清除DPPH自由基的活性测试结果表明,这些化合物具有促进小鼠骨髓间充质干细胞的增殖的活性及良好的抗氧化性。  相似文献   

5.
A series of new imidazole‐substituted pyridine‐2‐amine and benzo‐substituted imidazol‐2‐amine 3 – 12 were synthesized by treating various amines 1(a – d) with alkyl/aryl isothiocyanate 2(a‐c) at 60–90°C in isopropyl alcohol without using any catalyst with high yields. The structures of all the newly synthesized compounds were characterized using IR, NMR (1H, 13C), mass, and elemental analyses. All the newly synthesized compounds were screened for their in vitro antioxidant and antimicrobial activities to understand their biological potency. All the title compounds exhibited good antioxidant and antimicrobial activities in vitro when compared to the standard drugs.  相似文献   

6.
A new class of novel 7,8‐dihydroquinolin‐5‐(1H,4H,6H)‐one derivatives ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k ) were synthesized by the one‐pot four‐component condensation of dimedon, α‐ionone, ammonium acetate, and benzaldehyde derivatives. The structures were characterized by elemental analysis, IR, 1H‐NMR, and 13C NMR spectral studies. All the title compounds were screened for antioxidant properties and some of them found to exhibit potent in vitro antioxidant activity. J. Heterocyclic Chem., (2011).  相似文献   

7.
In the present work, we synthesized a series of [1,2,4]triazolo[3,4‐b][1,3,4]thiadiazole derivatives ( 6a , 6b , 6c , 6d , 6e , 6f and 7a , 7b , 7c , 7d , 7e , 7f ) by using simple starting materials, namely, β‐amino acids and different aromatic acid hydrazides. The newly synthesized compounds were characterized by mass, IR, 1H, and13C‐NMR spectral data analysis. The newly synthesized compounds were tested for their antimicrobial activities and antioxidant properties. Compound 6c was a potent microbial agent particularly against Staphylococcus aureus (MIC 3.12 µg/mL) and Candida albicans (MIC 6.25 µg/mL) when compared with the reference drugs ciprofloxacin and fluconazole, respectively. The antioxidant activity of the synthesized compounds was also evaluated by 1,1‐diphenyl‐2‐picryl hydrazyl, nitric oxide, and hydrogen peroxide radical scavenging methods. Compounds 6c , 6f , 7c , and 7f showed good radical scavenging activity due to the presence of electron‐donating group on phenyl ring.  相似文献   

8.
Fused 3,6‐disubstituted triazolothiadiazoles were synthesized in good yield from a rapid and convenient oxidative cyclization of N‐heteroaryl‐substituted hydrazones promoted by chloramine‐T trihydrate at ambient temperature. The structure of the synthesized compounds was confirmed by FTIR, 1H NMR, 13C NMR, and mass spectral data. The synthesized compounds were evaluated for their antioxidant and antitubercular activities. All the compounds 5a‐i and 6a‐i showed good antitubercular activity. However, only compounds 5a‐i showed good antioxidant activity.  相似文献   

9.
A series of novel 2‐(4‐(4‐chlorophenyl)‐1H‐pyrazol‐3‐yl)‐5‐(Aryl)‐1,3,4‐oxadiazoles were synthesized by unexpected aromatization during oxidative cyclization of 4‐(4‐chlorophenyl)‐4,5‐dihydro‐1H‐pyrazole‐3‐carbohydrazones using chloramine‐T as an oxidant. The hydrazones were derived from 4‐(4‐chlorophenyl)‐4,5‐dihydro‐1H‐pyrazole‐3‐carbohydrazide and various substituted aldehydes. The structure of the synthesized compounds was confirmed by FTIR, 1H NMR, 13C NMR, and mass spectral data. The synthesized compounds were evaluated for their antitubercular and antioxidant activities. All the compounds 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h and 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h showed good antitubercular activity against Mycobacterium tuberculosis (minimum inhibitory concentration = 25 µg/mL for 4f and 4g , 50–100 µg/mL for the rest). However, all the compounds exhibited poor antioxidant activity against 1,1‐diphenyl‐2‐picryl‐hydrazil free radical.  相似文献   

10.
A new class of bis(arylsulfonylmethylazolyl)pyridines and bis(arylaminosulfonylmethyl-azolyl)pyridines were synthesized from the synthetic intermediates methyl arylsulfonylacetic acid hydrazide and methyl arylaminosulfonylacetic acid hydrazide adopting a green methodology-ultrasonication. All the synthesized compounds were resulted in higher yield and in shorter reaction times. The spectral parameters such as IR, 1H NMR, 13C NMR, mass and microanalyzes were used to determine the structures of all the synthesized compounds and were assayed for antioxidant activity. The bis(arylaminosulfonylmethylazolyl)pyridines showed higher radical scavenging activity than the bis(arylsulfonylmethylazolyl)pyridines. Besides, unsubstituted, and methyl substituted compounds exhibited greater activity. Among all the tested compounds 8b and 11b were identified as potential antioxidants.  相似文献   

11.
A new series of benzimidazole derivatives ( 1-15 ) containing 1,2,4-triazole, 1,3,4-thiadiazole, 1,3,4-oxadiazole, and thiazolidinon rings have been synthesized. All new synthesized benzimidazole compounds were confirmed by 1H NMR, 13C NMR spectra, and LC-MS, and they were examined for their antioxidant and antimicrobial activities. Compounds 7 and 1 showed the highest and the lowest antioxidant activities, respectively. The lowest minimum inhibition concentration value found in compound 5 against Enterobacter aerogenes.  相似文献   

12.
Some novel [1,2,4]triazolo[3,4‐b][1,3,4]thiadiazole derivatives were synthesized from aryl acetic acids. All the synthesized derivatives were selected for the screening of antibacterial potential against Gram‐positive bacteria [Staphylococcus aureus (MTCC 3160) and Micrococcus luteus (MTCC 1538)] and Gram‐negative bacteria [Escherichia coli (MTCC 1652) and Pseudomonas aeruginosa (MTCC 424)] and antifungal potential against Aspergillus niger (MTCC 8652) and Candida albicans (MTCC 227), and free radical scavenging activity through 2,2‐diphenyl‐2‐picrylhydrazyl hydrate method. The compounds TH‐4 , TH‐13 , and TH‐19 were found to be more potent antimicrobial agents compared to standard drugs. The compounds TH‐3 , TH‐9 , and TH‐18 also showed significant antimicrobial activity. The compound TH‐13 showed antioxidant activity with IC50 value better than the standard compound. The structures of all the synthesized compounds were confirmed by Fourier transform infrared, 1H‐NMR, liquid chromatography–mass spectrometry, and CHN analyzer.  相似文献   

13.
1,3‐Dipolar cycloaddition reactions of N‐cyclohexyl maleimide ( 1 ) with azomethine N‐oxide ( 2 ) have afforded novel isoxazolidine ( 3 ) in excellent yield. Their structures have been characterized from their IR, 1H‐NMR, 13C‐NMR, 1H,1H‐COSY, MS(ESI), and elemental analysis techniques. In vitro antibacterial activity of the synthesized compounds were investigated against a representative panel of pathogenic strains specifically two Gram‐positive bacteria (Staphylococcus aureus and Streptococcus pyogenes ) and two Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli ) using agar‐well diffusion assay. Some of the compounds ( 3a , 3k , 3n , and 3o ) exhibited promising antibacterial activities. All the synthesized compounds have also been screened for their antioxidant activities and were found to be significantly active.  相似文献   

14.
Novel N‐aryl (and N‐alkyl) γ‐ and δ‐imino esters 2a–g ( 3a–g ) and N‐aryl (and N‐alkyl) ketimines 2h–j ( 3h–j ) were synthesized in high yields (80–99%) from their corresponding γ‐ and δ‐keto esters and ketones in this study. The structures of the synthesized compounds were clarified by Fourier transform infrared (FT‐IR), NMR (1H and 13C), mass spectrometry, and elemental analyses. Isomerizations [E/Z] were also determined by their 1H NMR spectra. The free‐radical scavenging activity of imines was evaluated using the 1,1‐diphenyl‐2‐picryl‐hydrazyl (DPPH) method. The relationships between the structure and antioxidant activity of these compounds are discussed. Among these compounds, 2a–c (at the concentration 1000 μg/mL) exhibit high antioxidant activity similar to those of the standards (butylated hydroxyanisole [ BHA], butylated hydroxytoluene [ BHT], and ascorbic acid).  相似文献   

15.
A number of pyridazinone derivatives bearing substituted benzylidene and heterocyclic/aromatic rings at 4th and 6th positions, respectively were synthesized in good to moderate yields and screened for antioxidant activity. Antioxidant activity of pyridazinone derivatives was evaluated by using several in vitro radical scavenging methods such as 1,1‐diphenylpicrylhydrazyl (DPPH), hydrogen peroxide (H2O2), nitric oxide (NO), reducing power, and metal chelating assay etc. Molegro virtual docker software was used to study the binding affinity of the title compounds with the xanthine oxidoreductase enzyme. Amongst the tested compounds, 5a, 5d, 5g & 5j were found to exhibit excellent antioxidant activity at par with the positive control, ascorbic acid. The molecular docking studies of these compounds demonstrated a good selectivity profile with xanthine oxidoreductase receptors. A preliminary study of the structural‐activity relationship showed that the presence of electron withdrawing group and heterocyclic ring on pyridazinone nucleus are associated with the best potency and selectivity profile. It could be proposed that xanthine oxidoreductase receptor may be involved in observed antioxidant activity of pyridazinone derivatives bearing aromatic ring and benzylidene substituents and thus the synthesized compounds are worthy of further exploration.  相似文献   

16.
Schiff base derivatives have gained great importance due to revealing a great number of biological properties. Schiff bases were synthesized by treatment of 4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one ( 1 ) with various aldehydes in methanol at reflux. In addition, diamine was reacted with an aldehyde to yield the corresponding Schiff bases. The structures of synthesized Schiff bases were elucidated by spectroscopic methods such as microanalysis, 1H-NMR, 13C-NMR, and FTIR. Antioxidant activities of synthesized Schiff bases were carried out using different antioxidant assays such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, and reducing power activity. (E)-4-((1H-indol-3-yl)methyleneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one ( 3 ), (E)-1,5-dimethyl-4-((2-methyl-1H-indol-3-yl)methyleneamino)-2-phenyl-1H-pyrazol-3(2H)-one ( 5 ), (E)-1,5-dimethyl-2-phenyl-4-(thiophen-2-ylmethyleneamino)-1H-pyrazol-3(2H)-one ( 7 ), (E)-1,5-dimethyl-2-phenyl-4-(quinolin-2-ylmethyleneamino)-1H-pyrazol-3(2H)-one ( 9 ), (1S,2S,N1,N2)-N1,N2-bis((1H-indol-3-yl)methylene)cyclohexane-1,2-diamine ( 11 ), and (1S,2S,N1,N2)-N1,N2-bis((2-methyl-1H-indol-3-yl)methylene)cyclohexane-1,2-diamine ( 12 ) were synthesized in high yields. Compound 5 displayed a good ABTS•+ activity. Compound 3 revealed the outstanding activity in all assays. Compound 7 has the best-reducing power ability in comparison to other synthesized compounds. Although compounds 5, 11, 12 are new, compounds 3, 7, 9 are known. Due to revealing a good antioxidant activity, the synthesized compounds ( 3, 5, 7 ) have the potential to be used as synthetic antioxidant agents.  相似文献   

17.
Three series of new anthranilic diamide derivatives containing sulfide, N‐cyanomethylsulfilimine, and N‐cyanomethylsulfoximine groups were designed and synthesized by combining the active substructures of anthranilic diamides and sulfoxaflor. The structures of all newly synthesized compounds were confirmed by IR and 1H/13C‐NMR, and some of them were confirmed by elemental analysis or HRMS too. The synthesized compounds were screened for their insecticidal and fungicidal activities. Bioasssay results indicated that some of the synthesized compounds possessed certain degrees of insecticidal activity against Mythimna separata. However, some compounds exhibited good fungicidal activity against Sclerotinia sclerotiorum.  相似文献   

18.
A novel class of 3‐(4‐chlorophenyl)‐2‐(substituted)quinazolin‐4(3H)‐one derivatives were synthesized, and the structure of synthesized compounds was characterized by IR, 1H NMR, and mass spectroscopy. The newly synthesized compounds ( 4a–g and 6a–g ) were tested for their in vitro cyclooxygenase (COX) inhibition activity. The compounds have inhibitory profile against both COX‐1 and COX‐2, and some of the compounds are found to be selective against COX‐2. The compound 6g showed distinct inhibitory activity on COXs. The synthesized compounds were evaluated for their potential anti‐inflammatory activity as inhibitors of the proinflammatory cytokines IL‐6. Compounds 4d – g showed the highest level of inhibition among all the tested compounds. Thus, our data suggested that these compounds may represent a new class of potent anti‐inflammatory agents.  相似文献   

19.
(1,5‐Dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)carbono‐hydrazonoyl dicyanide was used as a key intermediate for the synthesis of novel pyrazole, isoxazole, pyrimidine, and pyridazine derivatives. The newly synthesized compounds were characterized by elemental analyses and spectral data (IR, 1H‐NMR, 13C‐NMR, and mass spectra). The compounds were tested for their in vitro antibacterial activity against Gram‐positive bacteria as (Staphylococcus aureus and Bacillus subtilis ) and Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli ). The investigated compounds were tested against two strains of fungi Botrytis fabae and Fusarium oxysporum using diffusion agar technique. The biological results showed clearly that most of the synthesized compounds revealed mild to moderate activity against the used microorganisms.  相似文献   

20.
A novel phthalonitrile derivative bearing 2‐isopropyl‐6‐methylpyrimidin‐4‐yloxy substituents at peripheral positions was synthesized by a nucleophilic substitution reaction. Metallophthalocyanines were obtained from the reaction of the novel phthalonitrile with metal Zn, Cu, Co, and Ni salts. The characterization of the compounds was performed using elemental analysis as well as UV/Vis, FT‐IR, and 1H‐NMR spectroscopy. The aggregation behaviors of phthalocyanine complexes were also investigated. These metallophthalocyanines do not show any aggregation behavior between 10–4–10–6 M concentration range in THF. The antioxidant activities of the synthesized compounds were evaluated using three different tests: 2, 2‐diphenyl‐1‐picrylhydrazyl (DPPH) radical scavenging, metal chelating activity, and reducing power assays. All the compounds exhibited various antioxidant activities. In addition, antimicrobial activity of the compounds was tested over four gram positive and two gram negative bacteria. Moreover, the ground‐state geometries of the complexes were optimized using density functional theory (DFT) methods at B3LYP/6‐31G(d, p) level in order to obtain information about the 3D arrangements and electronic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号