首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
报道了β-环糊精和磺化杯[4]芳烃修饰银纳米粒的制备、表征及其作为甲磺酸帕珠沙星的比色探针的应用。结果表明,两种化学修饰银纳米粒对甲磺酸帕珠沙星都能较好地识别,对甲磺酸帕珠沙星的最低检出浓度可达1.0×10-5mol/L。  相似文献   

2.
采用硼氢化钠还原硝酸银,用振荡器在不同转速下振荡得到单分散的银纳米微球和银纳米棒,再将银纳米微球及银纳米棒自组装于被3-氨丙基-三甲氧基硅烷(APTMS)修饰的玻璃基片上,制得了具有表面增强拉曼(SERS)活性的基底,分别以罗丹明6G(R6G)和罗丹明B(RB)为探针分子对这两种基底进行SERS活性检测,结果发现这两种基底均为较理想的SERS衬底。  相似文献   

3.
Silver nanoparticles are of high importance due to their electrical, magnetic, and optical properties, as well as catalytic and biocidal activity that are superior to the bulk silver and other metals. To prepare certain devices, generally, silver is incorporated into a matrix either as preformed or in situ‐generated particles. Silver nanoparticles were generated in situ into a silicone matrix formed by cohydrolysis of the mixture of silanes, each of them having a certain role: dimethyldiethoxysilane (DMDES) as a precursor for highly flexible polydimethylsiloxane, methyltriethoxysilane (MTES) as a cross‐linker highly compatible with polydimethylsiloxane, and 3‐aminopropyltriethoxysilane as a stabilizer, since it can readily complex to silver atoms through its amine functionality. Dimethylformamide (DMF) was used as a solvent for the silver nitrate and reducing agent. The samples were investigated both in sol state and as aged coating films deposited on glass substrate. The complexation of the silver and the matrix formation were emphasized by FTIR. The size of the formed silicone particles encapsulating silver was estimated by dynamic light scattering (DLS) (about 100 nm) in sol and by AFM in film (about 90 nm). The formation of the clusters or nanoparticles depending on the ratio between the reducing and complexing agents was evidenced by UV–Vis absorption spectra. Thus, it would create conditions to stop and isolate clusters at the desired size by precise control of the experimental conditions. The composites could be used alone as antibacterial‐coating materials but also, porous silica having incorporated silver clusters with potential applicability in catalysis may result after their calcination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A highly flexible and free‐standing paper with high antibacterial activity made from silver nanoparticle (AgNP)‐decorated ultralong hydroxyapatite nanowires (HAPNWs) is reported. The HAPNWs@AgNPs nanocomposites were obtained from a facile one‐step solvothermal process and utilized for the construction of highly flexible and free‐standing inorganic paper through a simple vacuum‐filtration procedure. The structure and properties of the HAPNWs@AgNPs paper were characterized in detail. Scanning electron microscope (SEM) and transmission electron microscope (TEM) micrographs show that AgNPs are highly dispersed and stabilized in the nanocomposite and exhibit a narrow particle size distribution. The effects of the concentration of silver nitrate, solvothermal temperature and time on the product were systematically investigated. This method is simple, convenient and reproducible. The as‐prepared HAPNWs@AgNPs paper shows long‐time sustained silver‐ion release, high antibacterial activity against both Gram‐negative and Gram‐positive bacteria, and good biocompatibility. Overall, this work provides a novel pathway for the preparation of a new type of highly flexible, free‐standing and antibacterial inorganic paper made from silver nanoparticle‐decorated hydroxyapatite nanowires for various applications, as a promising functional biomaterial.  相似文献   

5.
We are reporting on a novel preparation of silver chloride in sol-gel silica films as a precursor for nanoparticles of silver. The precipitation of silver chloride particles in-situ was achieved by the reaction of silver nitrate with trichloroacetic acid. The reaction leads to a slow release of chloride leading to a controlled precipitation of AgCl. The existence of an isotropic crystalline AgCl phase in the glass films was demonstrated by X-rays Diffraction Analysis (XRD) and Scanning Electron Microscope and Energy Dispersive Analysis of X-rays (SEM-EDAX). The resulting films are of good optical quality and exhibit a strong coloration upon irradiation with sunlight or heating to 600°C, due to the reduction of AgCl to silver nanoparticles. The absorption spectra of the films before and after irradiation are shown.  相似文献   

6.
Transparent, flexible electronic skin holds a wide range of applications in robotics, humanmachine interfaces, artificial intelligence, prosthetics, and health monitoring. Silver nanowire are mechanically flexible and robust, which exhibit great potential in transparent and electricconducting thin film. Herein, we report on a silver-nanowire spray-coating and electrodemicrostructure replicating strategy to construct a transparent, flexible, and sensitive electronic skin device. The electronic skin device shows highly sensitive piezo-capacitance response to pressure. It is found that micropatterning the surface of dielectric layer polyurethane elastomer by replicating from microstructures of natural-existing surfaces such as lotus leaf, silk, and frosted glass can greatly enhance the piezo-capacitance performance of the device. The microstructured pressure sensors based on silver nanowire exhibit good transparency, excellent flexibility, wide pressure detection range (0-150 kPa), and high sensitivity (1.28 kPa-1).  相似文献   

7.
Alkali-free lead phosphate glasses containing silver chloride have been developed for anion responsive sensors. From measurements of the final glass compositions by electron probe microanalysis, it became clear that some of chloride ions in the glass bulk were not volatilized during the glass melting process. Compared with phosphate glasses containing silver oxide, the new glass electrodes containing silver chloride could respond more rapidly, although the response behaviour for anionic species were similar. From the electrode potential vs. time curve for the anionic species, the potential rapidly reached equilibrium when these concentrations varied from 10?5 to 10?2 M. The response times, t95, to thiocyanate of the new glass electrode and the phosphate glass electrode containing silver oxide were 30 and 110 s, respectively. Moreover, the response time required for an initial potential change with a concentration jump of thiocyanate with the new glass electrode was found to be independent of the membrane thickness within about 2 mm and of the measuring temperature between 15 and 40°C. It is concluded that the diffusion process of species such as silver ion in the glass bulk does not take part in the initial part of the response behaviour.  相似文献   

8.
采用寡核苷酸为连接分子成功制备了生物素修饰的纳米银探针, 并建立了纳米银催化同种金属离子的特异性还原显色反应. 实验采用蛋白质芯片为分析工具, 以微量人IgG为蛋白分析模式研究了纳米银探针/氢醌/硝酸银体系的显色分析性能. 实验结果表明, 上述检测体系可对160 fg~100 pg含量范围内的微量蛋白显示可视化结果, 蛋白点的灰度值与其浓度具有良好的相关性, 最小蛋白检测量可达160 fg. 同时还开展了与商品化链亲和素纳米金/银增强试剂显色方法的对比实验, 结果表明, 本法制备的探针对蛋白的检出限降低了约40倍, 且具有存储稳定、反应快速等优点.  相似文献   

9.
The use of an amorphous silicon-carbon alloy overcoating on silver nanostructures in a localized surface plasmon resonance (LSPR) sensing platform allows for decreasing the detection limit by an order of magnitude as compared to sensors based on gold nanostructures deposited on glass. In addition, silver based multilayer structures show a distinct plasmonic behaviour as compared to gold based nanostructures, which provides the sensor with an increased short-range sensitivity and a decreased long-range sensitivity.  相似文献   

10.
The formation of nanometer‐sized gaps between silver nanoparticles is critically important for optimal enhancement in surface‐enhanced Raman scattering (SERS). A simple approach is developed to generate nanometer‐sized cavities in a silver nanoparticle thin film for use as a SERS substrate with extremely high enhancement. In this method, a submicroliter volume of concentrated silver colloidal suspension stabilized with cetyltrimethylammonium bromide (CTAB) is spotted on hydrophobic glass surfaces prepared by the exposure of the glass to dichloromethysilane vapors. The use of a hydrophobic surface helps the formation of a more uniform silver nanoparticle thin film, and CTAB acts as a molecular spacer to keep the silver nanoparticles at a distance. A series of CTAB concentrations is investigated to optimize the interparticle distance and aggregation status. The silver nanoparticle thin films prepared on regular and hydrophobic surfaces are compared. Rhodamine 6G is used as a probe to characterize the thin films as SERS substrates. SERS enhancement without the contribution of the resonance of the thin film prepared on the hydrophobic surface is calculated as 2×107 for rhodamine 6G, which is about one order of magnitude greater than that of the silver nanoparticle aggregates prepared with CTAB on regular glass surfaces and two orders of magnitude greater than that of the silver nanoparticle aggregates prepared without CTAB on regular glass surfaces. A hydrophobic surface and the presence of CTAB have an increased effect on the charge‐transfer component of the SERS enhancement mechanism. The limit of detection for rhodamine 6G is estimated as 1.0×10?8 M . Scanning electron microscopy and atomic force microscopy are used for the characterization of the prepared substrate.  相似文献   

11.
A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly involves two steps of the preparation of silver-coated glass microsphere core-shell particles by a controllable liquid reduced reaction of Ag[(NH3)2]+ solution, which only produces silver nanoparticles anchored on the surface of the thiolated glass microsphere templates, and the removal of glass microspheres by wet chemical etching with HF solution. The products are well characterized by field emitted scanning electron microscopy (SEM), transmitted electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) etc. The as-prepared core-shell particles and hollow particles have even and compact silver shells. The electromagnetic shielding coatings based on the silver hollow microspheres are demonstrated to have high conductivity, excellent shielding effectiveness and long durability, suggesting that the silver hollow microspheres obtained here are a novel light-weight electromagnetic shielding filler and will have extensive applications in the electromagnetic compatibility fields.  相似文献   

12.
Artificial implants and biomaterials lack the natural defense system of our body and, thus, have to be protected from bacterial adhesion and biofilm formation. In addition to the increasing number of implanted objects, the resistance of bacteria is also an important problem. Silver ions are well‐known for their antimicrobial properties, yet not a lot is known about their mode of action. Silver is expected to interact on many levels, thus the development of silver resistance is very difficult. Nevertheless, some bacteria are able to resist silver, even at higher concentrations. One such defense mechanism of bacteria against heavy‐metal intoxication includes an efflux system. SilE, a periplasmic silver‐binding protein that is involved in this defense mechanism, has been shown to possess numerous histidine functions, which strongly bind to silver atoms, as demonstrated by ourselves previously. Herein, we address the question of how histidine binds to silver ions as a function of pH value. This property is important because the local proton concentration in cells varies. Thus, we solved the crystal structures of histidine–silver complexes at different pH values and also investigated the influence of the amino‐acid configuration. These results were completed by DFT calculations on the binding strength and packing effects and led to the development of a model for the mode of action of SilE.  相似文献   

13.
Silver nanoparticles were covalently coated on a glass surface by overnight exposure of the glass substrate to nanoparticle solutions, using 3‐aminopropyltriethoxysilane (APTES) as a coupling agent. Washing and air‐drying yield a uniformly coated glass substrate, which can be used as a material capable of killing harmful microorganisms in food industry. Nanoparticles are stable on the glass surface and are not washed away by water; they even remain on the glass surface under short‐term ultrasonic irradiation. The morphology of silver nanoparticles on the glass substrate was characterized by scanning electron microscope (SEM). The existence of Ag nanoparticles on the substrate was also confirmed by ultraviolet‐visible (UV–Vis) spectroscopy. Fourier transform infrared (FT‐IR) measurement shows that the connection is based on covalent bonds between silver nanoparticle surface/APTES molecules. Combining the effects of low cost and effectiveness in prohibiting the growth of Escherichia coli, such materials are expected to be used as antibacterial coatings, which may have large potential applications in food industry. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
银电极在电化学分析研究中的应用   总被引:1,自引:0,他引:1  
银电极(包括裸银电极、修饰银电极)因其特有的物理化学性质和电化学性能,被广泛用于伏安分析、光谱/波谱电化学和压电传感器等电化学分析领域。本文对某在这些领域中的研究和应用进行了综述,引用文献一百余篇。  相似文献   

15.
本文使用Triton X-100作为模板剂制备半导体硫化银纳米颗粒,并研究了其吸收光谱的兰移特性。在金属铝或金基底上自组装有机双功能分子单层膜后,将其浸入所制备的纳米硫化银颗粒的微乳液中,自组装得到硫化银纳米颗粒单层膜并研究了其表面形貌特征。  相似文献   

16.
杨海峰  封婕  王桂华  章宗穰 《化学学报》2004,62(20):2007-2009,F006
利用共焦激光拉曼系统,原位测定了电位扫描过程中NAD^ 分子在银电极上的表面增强拉曼光谱的变化.通过分析0.4→-0.2→-0.4V电位区间的拉曼光谱的变化,推断由于NAD^ 分子中存在着具有空间旋转自由度的磷酸二酯键,分子中腺嘌呤和烟酰胺两结构单元在银电极上的吸附构型都随电位变化而发生改变.  相似文献   

17.
The present investigation describes a facile and rapid approach of conductive nanocomposites production and assesses the opportunity of their use as electro‐mechanical sensors. Hybrid materials containing silver and polyaniline nanoparticles reinforcing a thermoplastic elastomeric matrix were studied. The approach developed includes ultrasonically assisted in situ inverse emulsion polymerization of aniline oxidized by a weak oxidant and silver nitrate, and supported with a strong oxidant, ammonia peroxydisulfate. Aniline was doped with dodecylbenzene sulfonic acid in the presence of dissolved styrene–isoprene–styrene thermoplastic elastomer. While conventional polymerization of aniline with silver nitrate takes 2 weeks, by utilization of inverse emulsion polymerization, the reaction time reduces to 5 days. The assistance of a strong oxidant dramatically shortens the reaction time to 30 min. The technique developed results in uniform distribution of polyaniline/silver (PANI/Ag) conductive nanoparticles in the elastomeric matrix. The morphological studies of the films reveal spherically shaped 45 nm Ag particles. The presence of PANI/Ag in the styrene–isoprene–styrene elastomeric matrix enhances the electrical, thermal, and mechanical properties of the nanocomposites. The approach described provides an opportunity of the development of tunable structures and a remarkably distinctive architecture. A rapid electrical resistance response to an applied strain makes the nanocomposites developed useful as sensitive strain sensors. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Immobilization of Ag and Au nanoparticles (NPs) synthesized by ascorbic acid on chemically modified glass surface has been studied. 3‐[2‐(2‐Aminoethylamino)ethylamino]propyl‐trimethoxysilane (AMPTS), N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilan, and 3‐trimethoxysilyl‐1‐propanethiol (MSPT) were used as surface modifying agents. To improve immobilization efficiency, the ammonia solution has been used along with the silane reagents, which assisted to adsorb the metal NPs on glass surface. It was found that AMPTS and MSPT have considerable effect on deposition of Ag and AuNPs on glass substrate. The fabricated thin films were characterized by using UV‐Vis spectroscopy, atomic force microscopy, energy‐dispersive X‐ray spectroscopy and subjected to antimicrobial resistance test. The UV–Vis spectra show a distinctive plasmon resonance absorbance peak for thin films of Au and AgNPs prepared with MSPT and AMPTS, respectively. Atomic force microscopy images indicate that formation of Au and AgNPs with spherical morphology after immobilization on the glass substrate and also the dimensions of NPs on the surface appear larger than those observed in the parent colloidal solution. Energy‐dispersive X‐ray spectroscopy measurements confirmed the presence of silver and gold on the modified glass surface, and elemental composition was measured. The Au and AgNPs thin films show antibacterial activity against gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) bacteria in comparison with a blank sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The seminal qualitative concepts of chemical bonding, as presented by Walter Kossel and Gilbert Newton Lewis back in 1916, have lasting general validity. These basic rules of chemical valence still serve as a touchstone for validating the plausibility of composition and constitution of a given chemical compound. We report on Ag7Pt2O7, with a composition that violates the basic rules of chemical valence and an exotic crystal structure. The first coordination sphere of platinum is characteristic of tetravalent platinum. Thus, the electron count corresponds to Ag7Pt2O7*e, where excess electrons are associated with the silver substructure. Such conditions given, it is commonly assumed that the excess electrons are either itinerant or localized in Ag−Ag bonds. However, the material does not show metallic conductivity, nor does the structure feature Ag-Ag pairs. Instead, the excess electrons organize themselves in 2e−4c bonds within the silver substructure. This subvalent silver oxide reveals a new general facet pertinent to silver chemistry.  相似文献   

20.
DSC and TG-DTA techniques were used to investigate micro-sized silver powder particles and the adsorption of ethyl cellulose on these particles in a solution of ethyl acetate. The apparent specific heat of the silver particles was determined, and the kinetics of temperature-programmed desorption (TPD) of these adsorbed silver particles was investigated. Results show that the apparent specific heat and desorption kinetic parameters obtained by thermal analysis techniques could be used to characterize certain physico-chemical properties of such a particulate system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号