The much‐enhanced electrochemical responses of potassium ferricyanide and methylene blue (MB) were firstly explored at the glassy carbon electrode modified with single‐walled carbon nanotubes (SWNT/GCE), indicating the distinct electrochemical activity of SWNTs towards electroactive molecules. A hydrophobic room temperature ionic liquid (RTIL), 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6), was used as electrode modification material, which presented wide electrochemical windows, proton permeation and selective extraction ability. In consideration with the advantages of SWNTs and RTIL in detecting target molecules (TMs), a novel strategy of ‘sandwich–type’ electrode was established with TMs confined by RTIL between the SWNT/GCE and the RTIL membrane. The strategy was used for electrochemical detection of ascorbic acid (AA) and dopamine (DA), and detection limits of 400 and 80 fmol could be obtained, respectively. The selective detection of DA in the presence of high amount of AA could also be realized. This protocol presented many attractive advantages towards voltammetric detection of TMs, such as low sample demand, low cost, high sensitivity, and good stability. 相似文献
A series of condensation reactions of unmodified ketones and aromatic aldehydes to prepare α,β-unsaturated carbonyl compounds by means of Aldol reactions in Bronsted acid ionic liquids(BAILs)was explored.1-Butyl-3-methylimidazolium hydrogen sulphate(BMImHSO4)acting as an effective media and catalyst in aldol reactions was compared with other BAILs,with the advantages of high conversion and selectivity.The product was easily isolated and the left ionic liquid can be readily recovered and reused at least 3 times with almost the same efficiency.The scope and limitation of the present method were explored and the possible catalytic mechanism was speculated. 相似文献
The electrochemistry of dopamine (DA) was studied by cyclic voltammetry at a glassy carbon electrode modified by a gel containing multi-walled carbon nanotubes (MWNTs) and room-temperature ionic liquid of 1-octyl-3-methylimidazolium hexafluorophosphate (OMIMPF6). The thickness of gel on the surface of the electrode has to be controlled carefully because the charging currents increase with the modified layer being thicker. The anodic peaks of DA, ascorbic acid (AA) and uric acid (UA) in their mixture can be well separated since the peak potential of AA is shifted to more negative values, while that of UA is shifted to more positive values due to the modified electrode. At pH 7.08 the three peaks are separated ca. 0.20 and 0.15 V, respectively; hence DA can be determined in the presence of UA and more than 100 times excess of AA. Under optimum conditions linear calibration graphs were obtained over the DA concentration range 1.0 × 10−6 to 1.0 × 10−4 M. The detection limit of the current technique was found to be 1.0 × 10−7 M based on the signal-to-noise ratio of 3. The modified electrode has been successfully applied for the assay of DA in human blood serum. This work provides a simple and easy approach to selectively detect dopamine in the presence of ascorbic acid and uric acid. 相似文献
A water-soluble and electroactive composite - Pt nanoparticles/polyelectrolyte-functionalized ionic liquid (PFIL)/graphene sheets (GS) nanocomposite was synthesized in one pot. The structure and composition of the Pt/PFIL/GS nanocomposite were studied by means of ultraviolet-visible (UV-vis) and X-ray photoelectron spectra (XPS). Scanning electron microscopy (SEM) and transmission electron microscope (TEM) images reveal Pt nanoparticles are densely dispersed on the transparent thin PFIL-functionalized graphene sheets. The obtained Pt/PFIL/GS nanocomposite-modified electrode was fabricated to simultaneously determine ascorbic acid (AA) and dopamine (DA) by cyclic voltammetry. It is worthwhile noting that the difference between the two peak potentials of AA and DA oxidation is over 200 mV, which leads to distinguishing AA from DA. The detection of increasing concentrations of AA in the presence of DA and the oxidation of continuous addition of DA in the presence of AA were also studied using differential pulse voltammetry. The proposed sensor in real sample analysis was also examined in human urine samples. Three independent oxidation peaks appear in urine sample containing AA and DA. Therefore, the Pt/PFIL/GS nanocomposite might offer a good possibility for applying it to routine analysis of AA and DA in clinical use. 相似文献
Detection of dopamine (DA) in the presence of excess of ascorbic acid (AA) has been demonstrated using a conducting polymer matrix, poly (3,4-ethylenedioxythiophene) (PEDOT) film in neutral buffer (PBS 7.4) solution. The PEDOT film was deposited on a glassy carbon electrode by electropolymerization of EDOT from acetonitrile solution. Atomic force microscopy studies revealed that the electrodeposited film was found to be approximately 100 nm thick with a roughness factor of 2.6 nm. Voltammetric studies have shown catalytic oxidation of DA and AA on PEDOT modified electrode and can afford a peak potential separation of ∼0.2 V. It is speculated that the cationic PEDOT film interacts with the negatively charged ascorbate anion through favorable electrostatic interaction, which results in pre-concentration at a less anodic value. The positively charged DA tends to interact with the hydrophobic regions of PEDOT film through hydrophobic–hydrophobic interaction thus resulting in favorable adsorption on the polymer matrix. Further enhancement in sensitivity to micro molar level oxidation current for DA/AA oxidation was achieved by square wave voltammetry (SWV) which can detect DA at its low concentration of 1 μM in the presence of 1000 times higher concentration of AA (1 mM). Thus the PEDOT modified electrode exhibited a stable and sensitive response to DA in the presence of AA interference. 相似文献
An ionic liquid 1-butylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) was used as the substrate electrode and a poly(methylene blue) (PMB) functionalized graphene (GR) composite film was co-electrodeposited on CILE surface by cyclic voltammetry. The PMB–GR/CILE exhibited better electrochemical performances with higher conductivity and lower electron transfer resistance. Electrochemical behavior of dopamine (DA) was further investigated by cyclic voltammetry and a pair of well-defined redox peaks appeared with the peak-to-peak separation (ΔEp) as 0.058 V in 0.1 mol L−1 pH 6.0 phosphate buffer solution, which proved a fast quasi-reversible electron transfer process on the modified electrode. Electrochemical parameters of DA on PMB–GR/CILE were calculated with the electron transfer number as 1.83, the charge transfer coefficients as 0.70, the apparent heterogeneous electron transfer rate constant as 1.72 s−1 and the diffusional coefficient (D) as 3.45 × 10−4 cm2 s−1, respectively. Under the optimal conditions with differential pulse voltammetric measurement, the linear relationship between the oxidation peak current of DA and its concentration was obtained in the range from 0.02 to 800.0 μmol L−1 with the detection limit as 5.6 nmol L−1 (3σ). The coexisting substances exhibited no interference and PMB–GR/CILE was applied to the detection of DA injection samples and human urine samples with satisfactory results. 相似文献
The properties of graphite electrode (Gr) modified with poly(diallyl dimethyl ammonium chloride) (PDDA) for the detection of uric acid (UA) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA) have been investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The polymer modified graphite electrode was prepared by a very simple method just by immersing the graphite electrode in PDDA solution for 20 minutes. The PDDA/Gr modified electrode displayed excellent electrocatalytic activity towards the oxidation of UA, DA and AA compared to that at the bare graphite electrode. The electrochemical oxidation signals of UA, DA and AA are well resolved into three distinct peaks with peak potential separations of 220 mV, 168 mV and 387 mV between AA‐DA, DA‐UA and AA‐UA respectively in cyclic voltammetry studies and the corresponding peak potential separations are 230 mV, 130 mV and 354 mV respectively in differential pulse voltammetry. The lowest detection limits obtained for UA, DA and AA were 1×10?7 M, 2×10?7 M and 800×10?9 M respectively. The PDDA/Gr electrode efficiently eliminated the interference of DA and a high concentration of AA in the determination of UA with good selectivity, sensitivity and reproducibility. The modified electrode was also successfully applied for simultaneous determination of UA, DA and AA in their ternary mixture. 相似文献
A convenient one-pot, three-component cyclocondensation mediated by ionic liquid for obtaining 2,3-disubstituted-4-thiazolidinones with excellent yields is reported. 相似文献
Electrochemical detection of dopamine (DA) in the presence of a large excess of ascorbic acid (AA) was investigated with a novel all‐carbon nanocomposite film of C60‐MWCNTs (C60‐functionalized multi‐walled carbon nanotubes) using a bare MWCNTs film as control. Although both films can selectively detect DA from AA by separating their oxidation potentials, the C60‐MWCNTs film shows special selectivity and good sensitivity for detecting DA. On one hand, the C60‐MWCNTs composite film shows a higher activity for DA oxidation with enhanced peak current. On the other hand, the C60‐MWCNTs composite film effectively suppresses the oxidation of AA. Remarkably, it is found that the oxidation current of DA is over 2 times higher than that of AA even when the concentration of AA is about 3 to 4 orders of magnitude higher than that of DA. This offers a tremendous advantage for the simple and clean detection of DA free of the interfering AA signal in a real assay. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectrometry are used to characterize the C60‐MWCNTs composite film. These novel properties are interpreted to arise from the facile electron transfer between C60 and MWCNTs in the C60‐MWCNTs nanocomposite film. 相似文献
Magnetic nanoparticles (MNPs) have been widely used in herbal analysis, and potential ionic liquid-based MNPs are expected in similar applications. In this study, the new functional Fe3O4 nanoparticles combined with a previously unreported ionic liquid were synthesized by three methods and used to enrich chlorogenic acid from aqueous solution and crude herbal extracts for the first time. The combination of pyrrole cation and proline anion immobilized on Fe3O4 nanoparticles had higher immobilized concentrations and ideal morphology, which can be easily adsorbed and recovered by an external magnetic field from the nanosuspension. When the mobile phase composed of acetonitrile and 0.5% phosphate aqueous solution (3:22, v:v) was used on a C18 chromatographic column (4.6?×?250?mm, 5?µm) at 25°C, the concentration of chlorogenic acid in herbal product was determined to be 7.01?mg/g. The validation indicated the method had good linearity, recovery, repeatability, and precision. These results show that the ionic liquid has been chemically bonded to the magnetic nanoparticles through the developed procedures and may be effectively used for the high-performance liquid chromatographic determination of chlorogenic acid in herbal products. 相似文献
A poly(caffeic acid) thin film was deposited on the surface of a glassy carbon electrode by potentiostatic technique in an
aqueous solution containing caffeic acid. The poly(caffeic acid)-modified electrode was used for the determination of ascorbic
acid (AA), dopamine (DA), and their mixture by cyclic voltammetry. This modified electrode exhibited a potent and persistent
electron-mediating behavior followed by well-separated oxidation peaks toward AA and DA at a scan rate of 10 mV s−1 with a potential difference of 135 mV, which was large enough to determine AA and DA individually and simultaneously. The
catalytic peak current obtained was linearly dependent on the AA and DA concentrations in the range of 2.0 × 10−5−1.2 × 10−3 and 1.0 × 10−6−4.0 × 10−5 mol L−1 in 0.15 mol L−1 phosphate buffer (pH 6.64). The detection limits for AA and DA were 9.0 × 10−6 and 4.0 × 10−7 mol L−1, respectively. The modified electrode shows good sensitivity, selectivity, and stability and has been applied to the determination
of DA and AA in real samples with satisfactory results. 相似文献
在金电极表面制备了DTNB(5,5′ Di thiobis(2 nitrobenzoicacid))自组装单分子层膜(DTNB/AuSAM)。多巴胺在DTNB自组装膜上有一对可逆性良好的氧化还原峰,其氧化峰电流与多巴胺的浓度在5.0×10-6mol/L~1.0×10-4mol/L的范围内呈线性关系,检出限为1.0×10-6mol/L。在pH3.5的缓冲溶液中,在DTNB自组装膜上多巴胺和抗坏血酸的电化学响应可以明显区分,氧化峰电位分离达276mV。可用于抗坏血酸存在下多巴胺的检测。测定了盐酸多巴胺注射液中多巴胺的含量,其平均回收率为104%。 相似文献
Graphene/p-aminobenzoic acid composite film modified glassy carbon electrode (Gr/p-ABA/GCE) was first employed for the sensitive determination of dopamine (DA). The electrochemical behavior of DA at the modified electrode was investigated by cyclic voltametry (CV), differential pulse voltametry (DPV) and amperometric curve. The oxidation peak currents of DA increased dramatically at Gr/p-ABA/GCE. The modified electrode was used to electrochemically detect dopamine (DA) in the presence of ascorbic acid (AA). The Gr/p-ABA composite film showed excellent electrocatalytic activity for the oxidation of DA in phosphate buffer solution (pH 6.5). The peak separation between DA and AA was large up to 220 mV. Using DPV technique, the calibration curve for DA determination was obtained in the range of 0.05-10 μM. The detection limit for DA was 20 nM. AA did not interfere with the determination of DA because of the very distinct attractive interaction between DA cations and the negatively Gr/p-ABA composite film. The proposed method exhibited good stability and reproducibility. 相似文献
To extend fossil oil supplies, sustainable feed stocks for the production of useful reagents and polymers should be harnessed. In this regard, chemicals derived from plants are excellent candidates. While the vast majority of plant sources used for polymer science only contain CxHyOz, alkaloids such as caffeine, nicotine, and theophylline possess nitrogen functionality that can provide new functions for bioderived polymers and their synthesis. In this context, the chemistry of theophylline, a natural product found in chocolate and tea, is exploited to create a cationic “poly(theophylline)” in a straightforward fashion for the first time. This work demonstrates how this new polymer can be synthesized and used for the creation of narrowly disperse cationic microspheres.