首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Aerobically grown Shewanella sp. bacterial suspension drop‐coated on a disposable screen‐printed carbon electrode was found to possess electroactivity without the aid of redox mediator. Cyclic voltammetric studies revealed the characteristics of a mixed diffusion adsorption‐controlled electrochemical process for direct electron transfer at the bacteria‐modified electrode. Both FE‐SEM and ATR FT‐IR experiments were carried out to investigate the surface characteristics. The electroanalytical applicability was further demonstrated for electrocatalytic reduction of arsenite, hydrogen peroxide and nitrite. Low cost and very simple manufacturing procedure allow for the proposed bacterial sensor to be applied as disposable devices.  相似文献   

2.
A simple study using a fixed amount of mesoporous carbon (MSU‐F‐C) was performed for the comparison of pyranose oxidase (POx) and glucose oxidase (GOx) in their electrochemical performance under biosensor and biofuel cell operating modes. Even though the ratio of POx to GOx in the glucose oxidation activity per unit weight of MSU‐F‐C was 0.35, the ratios of POx to GOx in sensitivity and power density were reversed to be 6.2 and 1.4, respectively. POx with broad substrate specificity and an option of large scale production using recombinant E. coli has a great potential for various electrochemical applications, including biofuel cells.  相似文献   

3.
Variations in the open‐circuit voltage (V oc) of ternary organic solar cells are systematically investigated. The initial study of these devices consists of two electron‐donating oligomers, S2 (two units) and S7 (seven units), and the electron‐accepting [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) and reveals that the V oc is continuously tunable due to the changing energy of the charge transfer state (E ct) of the active layers. Further investigation suggests that V oc is also continuously tunable upon change in E ct in a ternary blend system that consists of S2 and its corresponding polymer (P11):PC71BM. It is interesting to note that higher power conversion efficiencies can be obtained for both S2:S7:PC71BM and S2:P11:PC71BM ternary systems compared with their binary systems, which can be ascribed to an improved V oc due to the higher E ct and an improved fill factor due to the improved film morphology upon the incorporation of S2. These findings provide a new guideline for the future design of conjugated polymers for achieving higher performance of ternary organic solar cells.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号