首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper (I) oxide nanocubes (Cu2O NCs) covered with cobalt oxide nanohexagons (Co3O4 NHs) were prepared through simple chemical method. Here, ascorbic acid is used as reducing and capping agent for the synthesis of nanocubes and nanohexagons. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Energy‐dispersive X‐ray spectroscopy (EDX) and X‐ray diffraction spectroscopy (XRD) were employed to confirm the prepared nanocomposite. Cu2O NCs?Co3O4 NHs nanocomposite is drop cast on the glassy carbon electrode (GCE) for the fabrication of glucose sensor. The fabricated Cu2O NCs?Co3O4 NHs/GCE exhibited a better electrocatalytic activity towards the determination of glucose than that of individually fabricated Cu2O NCs and Co3O4 NHs modified GCE. Our finding exhibited a wide linear range from 1 μM to 5330 μM with LOD of 0.63 towards glucose. In addition, the sensor attained appreciable stability, repeatability and reproducibility. Practicality of the sensor was demonstrated in human serum samples. The main advantages of the fabricated sensor are simple, biocompatible, cost effective, fast response and highly stable electrode surface.  相似文献   

2.
Nanocomposites based on Cu2O and Ca‐montmorillonite (Ca+‐MMT) with different composition were successfully prepared via a simple hydrothermal method. The as‐prepared Cu2O‐MMT nanocomposites can rapidly catalytically oxidize the colorless chromogenic substrate, 3,3′,5,5′‐tetramethylbenzydine (TMB) into blue oxTMB with the aid of the H2O2 only in 30 s, which were observed by the naked eye. The reaction catalyzed by the Cu2O‐MMT nanocomposites followed the Michaelis–Menten kinetics. Compared to the MMT or Cu2O alone, Cu2O‐MMT with different mass ratio exhibited an enhanced peroxidase‐like activity. The fabricated H2O2 sensor exhibited a good response to H2O2 with a linear detection range from 3 to 80 μM as well as a detection limit of 2.395 μM. Taking the advantages of the Cu2O‐MMT nanocomposites, including outstanding peroxidase‐like activity and high sensitivity for colorimetric detection of H2O2, a colorimetric sensor based on the Cu2O‐MMT nanocomposites was designed and used to rapidly detect H2O2 in a short time.  相似文献   

3.
The nanocomposites of Ag nanoparticles supported on Cu2O were prepared and used for fabricating a novel nonenzymatic H2O2 sensor. The morphology and composition of the nanocomposites were characterized using the scanning electron microscope (SEM), transmission electron microscope (TEM), energy‐dispersive X‐ray spectrum (EDX) and X‐ray diffraction spectrum (XRD). The electrochemical investigations indicate that the sensor possesses an excellent performance toward H2O2. The linear range is estimated to be from 2.0 μM to 13.0 mM with a sensitivity of 88.9 μA mM?1 cm?2, a response time of 3 s and a low detection limit of 0.7 μM at a signal‐to‐noise ratio of 3. Additionally, the sensor exhibits good anti‐interference.  相似文献   

4.
This work confirms the presence of a large facet‐dependent photocatalytic activity of Cu2O crystals through sparse deposition of gold particles on Cu2O cubes, octahedra, and rhombic dodecahedra. Au‐decorated Cu2O rhombic dodecahedra and octahedra showed greatly enhanced photodegradation rates of methyl orange resulting from a better separation of the photogenerated electrons and holes, with the rhombic dodecahedra giving the best efficiency. Au–Cu2O core–shell rhombic dodecahedra also displayed a better photocatalytic activity than pristine rhombic dodecahedra. However, Au‐deposited Cu2O cubes, pristine cubes, and Au‐deposited small nanocubes bound by entirely {100} facets are all photocatalytically inactive. X‐ray photoelectron spectra (XPS) showed identical copper peak positions for these Au‐decorated crystals. Remarkably, electron paramagnetic resonance (EPR) measurements indicated a higher production of hydroxyl radicals for the photoirradiated Cu2O rhombic dodecahedra than for the octahedra, but no radicals were produced from photoirradiated Cu2O cubes. The Cu2O {100} face may present a high energy barrier through its large band edge bending and/or electrostatic repulsion, preventing charge carriers from reaching to this surface. The conventional photocatalysis model fails in this case. The facet‐dependent photocatalytic differences should be observable in other semiconductor systems whenever a photoinduced charge‐transfer process occurs across an interface.  相似文献   

5.
Gold nanoparticle‐loaded rutile TiO2 with a bimodal size distribution around 10.6 nm and 2.3 nm (BM‐Au/TiO2) was prepared by the deposition precipitation and chemical reduction (DP‐CR) technique. Visible‐light irradiation (λ>430 nm) of the BM‐Au/TiO2 plasmonic photocatalyst yields 35 μm H2O2 in aerated pure water at irradiation time (tp)=1 h, and the H2O2 concentration increases to 640±60 μm by the addition of 4 % HCOOH as a sacrificing electron donor. Further, a carbonate‐modified surface BM‐Au/TiO2 (BM‐Au/TiO2‐CO32?) generates a millimolar level of H2O2 at tp=1 h with a quantum efficiency (Φ) of 5.4 % at λ=530 nm under the same conditions. The recycle experiments confirmed the stable performance of BM‐Au/TiO2.  相似文献   

6.
Hydrogen produced from water under solar energy is an ideal clean energy source, and the efficiency of hydrogen production usually depends on the catalytic systems based on new compounds and/or a unique nanostructure. Herein, well‐defined cube‐in‐cube hollow Cu9S5 nanostructures have been successfully prepared with Cu2O nanocubes and CS2 as precursors, and single‐shell hollow Cu9S5 nanocubes could be obtained by replacing CS2 with Na2S. The formation mechanism of cube‐in‐cube hollow nanostructures has been proposed based on the Kirkendell effect and an outward self‐assembly process. Further studies revealed that the cube‐in‐cube hollow Cu9S5 nanostructures exhibited better photocatalytic activity toward solar H2 evolution and would be a promising photocatalyst in the solar hydrogen industry.  相似文献   

7.
Herein, we report the development of a robust, sensitive, and selective non‐enzymatic electrochemical sensor for the detection of hydrogen peroxide (H2O2). The novel BA modified CN‐dot wrapped Cu2O‐nano‐frogspawn (FS@CN‐dot) sensor probe demonstrated a catalytic property towards H2O2 that allowed the highly sensitive electrochemical detection at a low reduction potential. The as prepared CN‐dot wrapped Cu2O hetero‐structured nanocomposite was analyzed using surface analysis methods to confirm the morphology, crystallinity, and oxidation states of various constituents and dopant elements. Further, the morphological analysis of the Cu2O nanoparticles revealed that the Cu2O retains frogspawns‐liked structure. Under the optimized experimental conditions, the sensor showed a wide dynamic range of H2O2 from 0.5 μM to 9 mM with a detection limit (LD) of 1.2±0.1 nM. The designed sensing probe showed good stability, high sensitivity, and selectivity even in the presence of potential interfering molecules. To check the reliability of the fabricated sensor in biomedical applications, the proposed sensing probe was successfully applied to monitor H2O2 in saliva of a gum‐diseased patient. To the best of our knowledge, this report is the first of its kind not only because of its novel construction style in terms of CN source, but also in terms of real sample applicability as well.  相似文献   

8.
In this work, we synthesized electroactive cubic Prussian blue (PB) modified single‐walled carbon nanotubes (SWNTs) nanocomposites using the mixture solution of ferric‐(III) chloride and potassium ferricyanide under ambient conditions. The successful fabrication of the PB‐SWNTs nanocomposites was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV). PB nanocrystallites are observed to be finely attached on the SWNTs sidewalls in which the SWNTs not only act as a carrier of PB nanocrystallites but also as Fe(III)‐reducer. The electrochemical properties of PB‐SWNTs nanocomposites were also investigated. Using the electrodeposition technique, a thin film of PB‐SWNTs/chitosan nanocomposites was prepared onto glassy carbon electrode (GCE) for the construction of a H2O2 sensor. PB‐SWNTs/chitosan nanocomposites film shows enhanced electrocatalytic activity towards the reduction of H2O2 and the amperometric responses show a linear dependence on the concentration of H2O2 in a range of 0.5–27.5 mM and a low detection limit of 10 nM at the signal‐to‐noise ratio of 3. The time required to reach the 95% steady state response was less than 2 s. CV studies demonstrate that the modified electrode has outstanding stability. In addition, a glucose biosensor is further developed through the simple one‐step electrodeposition method. The observed wide concentration range, high stability and high reproducibility of the PB‐SWNTs/chitosan nanocomposites film make them promising for the reliable and durable detection of H2O2 and glucose.  相似文献   

9.
Ternary Ag/Polyaniline/Au nanocomposites were synthesized successfully by immobilizing of Au nanoparticles (NPs) on the surface of Ag/Polyaniline (PANI) nanocomposites. Ag/PANI nanocomposites were prepared via in situ chemical polymerization of aniline in the presence of 4-aminothiophenol (4-ATP) capped silver colloidal NPs. Then, uniform gold (Au) NPs were assembled on the surface of resulted Ag/PANI nanocomposites through electrostatic interaction to get Ag/Polyaniline/Au nanocomposites. The nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), ultraviolet visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). Moreover, Ag/PANI/Au nanocomposites were immobilized on the surface of a glassy carbon electrode and showed enhanced electrocatalytic activity for the reduction of H2O2 compared with Ag/PANI.  相似文献   

10.
In this study, Prussian blue (PB) film on the electroreduced graphene oxide (ERGO)‐modified Au electrode surface (ERGO/PB) is easily prepared by means of cyclic voltammetric technique in the mixture of K3Fe(CN)6 and FeCl3. Its electrochemical behaviors for NADH biosensor are studied. The structural and morphological characters of modified electrode material are analyzed with using of XPS, XRD, Raman, EDS, and SEM techniques. ERGO/PB hybrid nanocomposite for NADH biosensor is exhibited to the higher catalytic effect (linear range from 1.0 to 100 μM, detection limit of 0.23 μM at S/N=3) compared to naked Au, ERGO‐modified Au, and PB‐modified Au electrodes. In addition to, ERGO/PB electrode was used to voltammetric and amperometric detection of H2O2. ERGO/PB electrodes also showed the same behavior as the NADH sensor. This ERGO/PB‐modified electrode supplied a simple, new, and low‐cost route for amperometric sensing of both NADH and H2O2.  相似文献   

11.
《Electroanalysis》2018,30(3):402-414
A sensitive electrochemical immunosensor for Hepatitis B virus surface antigen (HBsAg) detection was fabricated based on hemin/G‐quadruplex interlaced onto Fe3O4‐AuNPs or hemin ‐amino‐reduced graphene oxide nanocomposite (H‐amino‐rGO‐Au). G‐quadruplex DNAzyme, which is composed of hemin and guanine‐rich nucleic acid, is an effective signal amplified tool for its outstanding peroxidase activity and Fe3O4‐AuNPs or (H‐amino‐rGO‐Au) nanocomposites with quasi‐enzyme activity provide appropriate support for the immobilization of hemin/G‐quadruplex. The target protein was sandwiched between the primary antibody immobilized on the GO and secondary antibody immobilized on the Fe3O4‐AuNPs or (H‐amino‐rGO‐Au) nanocomposites and glutaraldehyde was used as linking agent for the immobilization of primary antibody on the surface of GO. Both Fe3O4‐AuNPs and H‐amino‐rGO‐Au nanocomposite and also hemin/G‐quadruplex can cooperate the electrocatalytic reduction of H2O2 in the presence of methylene blue as mediator. The proposed immunosensor has a wide linear dynamic range of 0.1 pg/ml to 300 pg/ml with a detection limit of 60 fg/ml when Fe3O4‐AuNPs was used for immobilization of hemin/G‐quadruplex, while the dynamic range and DL were 0. 1–1000 pg/mL and 10 fg/mL, respectively in the presence of H‐amino‐rGO‐ Au nanocomposite as platform for immobilizing of hemin/G‐quadruplex. The proposed immunosensor was also used for analysis of HBsAg in spiked human serum samples with satisfactory results.  相似文献   

12.
Ag/MnO2/GO nanocomposites were synthesized via the method of gas/liquid interface based on silver mirror reaction, and a non‐enzymatic H2O2 sensor was fabricated through immobilizing Ag/MnO2/GO nanocomposites on GCE. The composition and morphology of the nanocomposites were studied by energy‐dispersive X‐ray spectroscopy (EDS), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Electrochemical investigation indicated that it exhibited a favorable performance for the H2O2 detection. Its linear detection range was from 3 μM to 7 mM with a correlation coefficient of 0.9960; the sensitivity was 105.40 μA mM?1 cm?2 and the detection limit was estimated to be 0.7 μM at a signal‐to‐noise ratio of 3.  相似文献   

13.
使用L-半胱氨酸作为连接剂, 利用硼氢化钠原位还原预先吸附在介孔氧化亚铜表面的氯金酸根离子,得到了Au/Cu2O异质结构. 应用X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱和N2物理吸附等手段对催化剂进行表征, 并以λ>400 nm的可见光作为光源, 评价了该催化剂光催化降解亚甲基蓝(MB)的活性. 实验结果表明, 直径为4 nm的金颗粒完好地负载在介孔氧化亚铜的表面, 并且介孔氧化亚铜的细微结构与孔径均未发生变化. 研究表明, 以乙醇作为反应溶剂有效抑制了AuCl4-与Cu2O之间的氧化还原反应, 从而有利于氧化亚铜介孔结构的保持及金颗粒的原位还原. 光催化降解亚甲基蓝的结果表明, Au/Cu2O异质结构的光催化活性比纯氧化亚铜光催化活性有明显提高. 推测其光催化性能提高的主要原因如下: 一方面, 金颗粒良好的导电性有利于氧化亚铜表面电子的快速转移, 实现电子-空穴分离; 另一方面, 金颗粒可能存在的表面等离子共振现象加速了光生电子的产生.  相似文献   

14.
In the crystals of the five title compounds, tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(ethanol‐O)dicopper(II)–ethanol (1/2), [Cu2(C6H11O2)4(C2H6O)2]·2C2H6O, (I), tetrakis(μ‐3,3‐dimethylbutyrato‐O:O′)bis(2‐methylpyridine‐N)di­copper(II), [Cu2(C6H11O2)4(C6H7N)2], (II), tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(3‐methylpyridine‐N)di‐copper(II), [Cu2(C6H11O2)4(C6H7N)2], (III), tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(4‐methylpyridine‐N)di‐copper(II), [Cu2(C6H11O2)4(C6H7N)2], (IV), and tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(3,3‐dimethylbutyric acid‐O)dicopper(II), [Cu2(C6H11O2)4(C6H12O2)2], (V), the di­nuclear CuII complexes all have centrosymmetric cage structures and (IV) has two independent molecules. The Cu?Cu separations are: (I) 2.602 (3) Å, (II) 2.666 (3) Å, (III) 2.640 (2) Å, (IV) 2.638 (4) Å and (V) 2.599 (1) Å.  相似文献   

15.
Coordination polymers (CPs) built by coordination bonds between metal ions/clusters and multidentate organic ligands exhibit fascinating structural topologies and potential applications as functional solid materials. The title coordination polymer, poly[diaquabis(μ4‐biphenyl‐3,4′,5‐tricarboxylato‐κ4O3:O3′:O4′:O5)tris[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene‐κ2N3:N3′]dicopper(II)dicopper(I)], [CuII2CuI2(C15H7O6)2(C12H10N4)3(H2O)2]n, was crystallized from a mixture of biphenyl‐3,4′,5‐tricarboxylic acid (H3bpt), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and copper(II) chloride in a water–CH3CN mixture under solvothermal reaction conditions. The asymmetric unit consists of two crystallographically independent Cu atoms, one of which is CuII, while the other has been reduced to the CuI ion. The CuII centre is pentacoordinated by three O atoms from three bpt3− ligands, one N atom from a 1,4‐bib ligand and one O atom from a coordinated water molecule, and the coordination geometry can be described as distorted trigonal bipyramidal. The CuI atom exhibits a T‐shaped geometry (CuN2O) coordinated by one O atom from a bpt3− ligand and two N atoms from two 1,4‐bib ligands. The CuII atoms are extended by bpt3− and 1,4‐bib linkers to generate a two‐dimensional network, while the CuI atoms are linked by 1,4‐bib ligands, forming one‐dimensional chains along the [20] direction. In addition, the completely deprotonated μ4‐η1111 bpt3− ligands bridge one CuI and three CuII cations along the a (or [100]) direction to form a three‐dimensional framework with a (103)2(10)2(42.6.102.12)2(42.6.82.10)2(8) topology via a 2,2,3,4,4‐connected net. An investigation of the magnetic properties indicated a very weak ferromagnetic behaviour.  相似文献   

16.
A stable metal–organic framework pillared by Keggin‐type polyoxometalate, Cu6(Trz)10(H2O)4[H2SiW12O40]?8 H2O (Trz=1,2,4‐triazole) ( 1 ), has been prepared under hydrothermal condition. The 2D layer structure with a 22‐member ring was formed by Cu2+ ions, which are connected with each other via the Trz ligands on the ab plane. Thus, the 2D layers are further interconnected through Keggin polyoxoanions to generate a 3D porous network with a small 1D channel. Moreover, the presence of polyoxoanions make it exhibit selective adsorption of water and proton‐conducting properties. Additionally it showed efficient intrinsic peroxidase‐like activity, providing a simple and sensitive colorimetric assay to detect H2O2.  相似文献   

17.
The reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), suberic acid and Na2CO3 in a CH3CN–H2O solution yielded blue needle‐like crystals of [Cu2(phen)2(C8H12O4)2] · 3 H2O. The crystal structure (monoclinic, P21/n, a = 10.756(2) Å, b = 9.790(2) Å, c = 18.593(4) Å, β = 91.15(3)°, Z = 2, R = 0.043, wR2 = 0.1238) consists of suberato‐bridged [Cu2(phen)2(C8H12O4)4/2] layers and hydrogen bonded H2O molecules. The Cu atoms are coordinated by two N atoms from one bidentate chelating phen ligand and three carboxyl O atoms from different suberato ligands to form distorted [CuN2O3] square‐pyramids with one carboxyl O atom at the apical position (d(Cu–N) = 2.017(2), 2.043(3) Å, basal d(Cu–O) = 1.936(2), 1.951(2) Å and axial d(Cu–O) = 2.389(2) Å). Two [CuN2O3] square‐pyramids are condensed via a common O–O edge to a centrosymmetric [Cu2N4O4] dimer with the Cu…Cu distance of 3.406(1) Å indicating no interaction between Cu atoms. The resultant [Cu2N4O4] dimers are interlinked by the tridentate suberato ligands to form [Cu2(phen)2(C8H12O4)4/2] layers parallel to (101). These are assembled via π‐π stacking interactions into 3D network with H2O molecules in the tunnels extending in the [010] direction.  相似文献   

18.
A rigid imidazolate/sulfonate functionalized ligand, 6‐(4‐sulfonatopheny)imidazo[4, 5‐f]isoindole‐5, 7‐dione (SPID) was designed and used for assembling reactions with Mn2+ and Cu2+ ions. Two 2D frameworks compounds, [Mn(H‐1SPID)2(DMAC)2] ( 1 ) and [Cu(H‐2SPID)(H2O)2] · 0.7DMAC · 0.3H2O ( 2 ) (DMAC = N,N‐dimethylacetamide) were obtained. Single crystal X‐ray analyses show that 1 has a 2D (4, 4)‐net based on 4‐connected Mn2+ nodes and μ2‐coordinated H‐1SPID spacers, whereas compound 2 has a 2D (6, 3)‐net built of 3‐connected Cu2+ nodes and μ3‐coordinated H‐2SPID spacers. Additionally, the thermal behavior of 1 and 2 is presented.  相似文献   

19.
l‐Alanyl‐glutamine dipeptide assembles with CuII ions to give the 2D coordination framework [Cu2(C8H13N3O4)2·2H2O]n ( 1 ) in which amino acid residues result in specific void space. In presence of 4,4′‐bipyridine, framework 1 is turned into a binuclear complex [Cu2(C8H13N3O4)2(H2O)2(C10H8N2)·8H2O] ( 2 ), which is further linked into a 2D hydrogen‐bonded layer in which amino acid residues induce a hydrogen‐bonded water cluster containing eight water molecules in the void space.  相似文献   

20.
Abstract. The self‐assembly of glycyl‐L ‐leucine, Cu(NO3)2 · 3H2O and 4, 4′‐bipyridine resulted in the tetranuclear‐based metal‐dipeptide supramolecular framework [Cu4(C8H14N2O3)4(H2O)2(C10H8N2)2] · (C10H8N2) · 13H2O ( 1 ). In the structure, the 4, 4′‐bipyridine‐bridged tetranuclear complex of CuII‐glycyl‐L ‐leucine interacts with each other to form a 1D hydrogen‐bonded chain including uncoordinated 4, 4′‐bipyridine and an interesting water chain in different channels. Under similar reaction conditions, racemic glycyl‐D ,L ‐leucine gave rise to the centrosymmetric dinuclear complex [Cu2(C8H14N2O3)2(C10H8N2)] · 2H2O ( 2 ), which is linked into a 2D hydrogen‐bonded structure without 4, 4′‐bipyridine included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号