首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the use of monolithic molecularly imprinted polymers in a micropipette tip format allowing the simple and fast extraction of flavonoids from standard solutions and a black tea sample is demonstrated. The imprinted polymer employed quercetin, methacrylic acid or 4‐vinylpyridine, and ethylene glycol dimethacrylate as template, functional monomer, and cross‐linker, respectively. Surface morphologies of the quercetin‐imprinted polymers and the corresponding nonimprinted polymers were characterized by SEM. Extraction of flavonoid standards was performed to evaluate the selectivity and recovery with these imprinted and nonimprinted polymers. Flavonoid compositions in aliquots eluted from the tips were identified using fast GC with flame ionization detection. Maximum specific capacities of 0.2, 5.7, and 16.0 mg/g for catechin, morin, and quercetin, respectively, were obtained with the imprinted polymer prepared with methacrylic acid, with the corresponding recoveries of 99.8, 98.8, and 95.4%, respectively. Efficient extraction by the quercetin‐imprinted polymer of epicatechin, catechin, and quercetin from an apple‐flavored black tea sample was achieved, with GC–MS employed for compound identification for both the tea and extracted samples.  相似文献   

2.
A novel molecularly imprinted polymer based on magnetic phenyl‐modified multi‐walled carbon nanotubes was synthesized using curcumin as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross‐linker. The phenyl groups contained in the magnetic imprinted polymers acted as the assisting functional monomer. The magnetic imprinted polymers were characterized by scanning electron microscopy, Fourier‐transform infrared spectroscopy and vibrating sample magnetometry. Adsorption studies demonstrated that the magnetic imprinted polymers possessed excellent selectivity toward curcumin with a maximum capacity of 16.80 mg/g. Combining magnetic extraction and high‐performance liquid chromatography technology, the magnetic imprinted polymer based on magnetic phenyl‐modified multi‐walled carbon nanotubes was applied for the rapid separation and enrichment of curcumin from ginger powder and kiwi fruit root successfully.  相似文献   

3.
Surface molecularly imprinted polymers were successfully prepared by a novel two‐step precipitation polymerization method. The first‐step allowed the formation of 4‐vinylpyridine divinylbenzene and trimethylolpropane trimethacrylate copolymeric microspheres. In the second‐step precipitation polymerization, microspheres were modified with a molecularly imprinting layer of oleanolic acid as template, methacrylic acid as functional monomer, and divinylbenzene/ethylene glycol dimethacrylate as cross‐linker. The obtained polymers had an average diameter of 4.43 μm and a polydispersity index of 1.011; adsorption equilibrium was achieved within 40 min, with adsorption capacity reaching 27.4 mg/g. Subsequently, the polymers were successfully applied as the adsorbents of molecularly imprinted solid‐phase extraction to separate and purify the oleanolic acid from grape pomace. The content of oleanolic acid in the grape pomace extract was enhanced from 13.4 to 93.2% after using the molecularly imprinted solid‐phase extraction process. This work provides an efficient way for effective oleanolic acid separation and enrichment from complex matrices, which is especially valuable in industrial production.  相似文献   

4.
A novel molecularly imprinted polymers based on multiwalled carbon nanotubes synthesized by precipitate polymerization was applied as a selective sorbent for separation and determination of rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid) from the root of kiwi fruit samples coupled with high performance liquid chromatography (HPLC). The molecularly imprinted polymers were prepared with methacrylic acid and 4-vinylpyridine as bifunctional monomers. The chemical structure of the molecularly imprinted polymers was characterized by Fourier transform infrared spectrometer. The equilibrium rebinding experiment and competitive adsorption experiment showed that these imprinted polymers exhibited good adsorption ability toward rhein. The Langmuir adsorption equilibrium constant, K(m) , and theoretical maximum adsorption capacity, Q(m) , were estimated to be 0.43 and 6.77 mg g(-1) , respectively. Compared with molecularly imprinted polymers prepared with methacrylic acid or 4-vinylpyridine solely, the molecularly imprinted polymers synthesized with bifunctional monomers showed enhanced molecular imprinting effect and higher adsorption capacity for the template rhein. The performances of the molecularly imprinted polymers utilized as solid phase extraction sorbent were investigated in detail. The molecularly imprinted polymers prepared by the method proposed in this work could successfully apply to extraction and determination of rhein from the root of kiwi fruit samples coupled with HPLC.  相似文献   

5.
In this study, we have developed a method to assess adenosine 5?‐triphosphate by adsorptive extraction using surface adenosine 5′‐triphosphate‐imprinted polymer over polystyrene nanoparticles (412 ± 16 nm) for selective recognition/separation from urine. Molecularly imprinted polymer was synthesized by emulsion copolymerization reaction using adenosine 5′‐triphosphate as a template, functional monomers (methacrylic acid, N‐isopropyl acrylamide, and dimethylamino ethylmethacrylate) and a crosslinker, methylenebisacrylamide. The binding capacities of imprinted and non‐imprinted polymers were measured using high‐performance liquid chromatography with UV detection with a detection limit of 1.6 ± 0.02 µM of adenosine 5′‐triphosphate in the urine. High binding affinity (QMIP, 42.65 µmol/g), and high selectivity and specificity to adenosine 5′‐triphosphate compared to other competitive nucleotides including adenosine 5?‐diphosphate, adenosine 5?‐monophosphate, and analogs such as adenosine, adenine, uridine, uric acid, and creatinine were observed. The imprinting efficiency of imprinted polymer is 2.11 for urine (QMIP, 100.3 µmol/g) and 2.51 for synthetic urine (QMIP, 48.5 µmol/g). The extraction protocol was successfully applied to the direct extraction of adenosine 5′‐triphosphate from spiked human urine indicating that this synthesized molecularly imprinted polymer allowed adenosine 5′‐triphosphate to be preconcentrated while simultaneously interfering compounds were removed from the matrix. These submicron imprinted polymers over nano polystyrene spheres have a potential in the pharmaceutical industries and clinical analysis applications.  相似文献   

6.
A novel type of magnetic molecularly imprinted polymer was prepared for the selective enrichment and isolation of chelerythrine from Macleaya cordata (Willd) R. Br. The magnetic molecularly imprinted polymers were prepared using functional Fe3O4@SiO2 as a magnetic support, chelerythrine as template, methacrylic acid as functional monomer, and ethylene glycol dimethacrylate as cross‐linker. Density functional theory at the B3LYP/6‐31G (d, p) level with Gaussian 09 software was applied to calculate the interaction energies of chelerythrine, methacrylic acid and the complexes formed from chelerythrine and methacrylic acid in different ratios. The structural features and morphology of the synthesized polymers were characterized by using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, and vibration sample magnetometry. Adsorption experiments revealed that the magnetic molecularly imprinted polymers possessed rapid kinetics, high selectivity, and a higher binding capacity (7.96 mg/g) to chelerythrine than magnetic molecularly non‐imprinted polymers (2.36 mg/g). The adsorption process was in good agreement with the Langmuir adsorption isotherm and pseudo‐second‐order kinetics models. Furthermore, the magnetic molecularly imprinted polymers were successfully employed as adsorbents for the extraction and enrichment of chelerythrine from Macleaya cordata (Willd) R. Br. The results indicated that the magnetic molecularly imprinted polymers were suitable for the selective adsorption of chelerythrine from complex samples such as natural medical plants.  相似文献   

7.
为了制备能有效分离富集药草中槲皮素的固相萃取柱,以丙烯酰胺(AM)修饰的碳纳米管为载体,三硫代碳酸酯(DBTTC)为可逆加成-断裂链转移剂(RAFT试剂),槲皮素为模板,甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,乙腈为致孔剂,制备了槲皮素分子印迹聚合物,采用红外光谱、扫描电镜和热重分析对印迹材料进行表征,通过高效液相色谱(HPLC)研究聚合物的吸附性能和对底物的特异性识别能力。结果表明,通过活性自由基聚合法合成的多壁碳纳米管表面槲皮素分子印迹聚合具有更好的形态结构和吸附性能,且对槲皮素有很好的特异性识别能力。  相似文献   

8.
A molecularly imprinted polymer has been synthesized to specifically extract adefovir, an antiviral drug, from serum and urine by dispersive solid‐phase extraction before high‐performance liquid chromatography with UV analysis. The imprinted polymers were prepared by bulk polymerization by a noncovalent imprinting method that involved the use of adefovir (template molecule) and functional monomer (methacrylic acid) complex prior to polymerization, ethylene glycol dimethacrylate as cross‐linker, and chloroform as porogen. Molecular recognition properties, binding capacity, and selectivity of the molecularly imprinted polymers were evaluated and the results show that the obtained polymers have high specific retention and enrichment for adefovir in aqueous medium. The new imprinted polymer was utilized as a molecular sorbent for the separation of adefovir from human serum and urine. The serum and urine extraction of adefovir by the molecularly imprinted polymer followed by high‐performance liquid chromatography showed a linear calibration curve in the range of 20–100 μg/L with excellent precisions (2.5 and 2.8% for 50 μg/L), respectively. The limit of detection and limit of quantization were determined in serum (7.62 and 15.1 μg/L), and urine (5.45 and 16 μg/L). The recoveries for serum and urine samples were found to be 88.2–93.5 and 84.3–90.2%, respectively.  相似文献   

9.
Okutucu B  Telefoncu A 《Talanta》2008,76(5):1153-1158
Molecularly imprinted polymers using serotonin as the template molecule was prepared for selective recognition from platelet rich plasma by non-covalent imprinting approach. Four different monomers (methacrylic acid, acrylamide, 4-vinylpyridine and 2-acrylamido-2-methylpropane sulfonic acid) and acetonitrile and DMSO as porogen were investigated for the first time by bulk polymerization. The molecularly imprinted polymer which was prepared by acrylamide/methacrylic acid had the largest imprinting factor for serotonin. The affinity and specificity of these polymers were evaluated by equilibrium binding experiments. The effect of polarity of the solvents was examined by polymers binding capacity and imprinting factor. According to the Scatchard analysis the K(d) and Q(max) values were calculated as 1.95 micromoll(-1) and 19.129 micromolg(-1), respectively. The polymer was tested to evaluate serotonin from platelet rich plasma and 70% serotonin recovery was found.  相似文献   

10.
The present study describes the synthesis and preliminary testing of molecularly imprinted polymers (MIPs) as scavenger resins for removal of the genotoxic impurities (GTI) benzhydrol from active pharmaceutical ingredients (API). A new molecularly imprinted polymer was synthesized using benzhydrol (template molecule), methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross‐linker), 2,2′‐azobisisobutironitril (intiator) and chloroform (porogenic solvent). To compare the performance of this polymer, a control polymer or non‐imprinted polymer (NIP) was prepared under the same conditions without the use of template molecule. The synthesized polymers were characterized by FT‐IR spectroscopy. Selectivity of the molecularly imprinted polymer for absorption benzhydrol impurities through adsorption experiments reviews and the results were compared with the adsorption of impurities by NIP. Various parameters were optimized such as time, pH, type of eluent for elution of impurities from polymer, concentration of sample and saturation of polymer. The proposed method was applied for removal of benzhydrol from Diphenhydramine hydrochloride syrup and passing it through the MIPs led to the quantitative removal of benzhydrol.  相似文献   

11.
A new LC method to detect fusaric acid (FA) in maize is reported based on a molecularly imprinted SPE clean‐up using mimic‐templated molecularly imprinted polymers. Picolinic acid was used as a toxin analog for imprinting polymers during a thermolytic synthesis. Both acidic and basic functional monomers were predicted to have favorable binding interactions by MP2 ab initio calculations. Imprinted polymers synthesized with methacrylic acid or 2‐dimethylaminoethyl methacrylate exhibited imprinting effects in SPE analysis. FA levels were determined using RP ion‐pairing chromatography with diode‐array UV detection and tetrabutylammonium hydrogen sulfate in the mobile phase. A method was developed to detect FA in maize using molecularly imprinted SPE analysis within the range of 1–100 μg/g with recoveries between 83.9 and 92.1%.  相似文献   

12.
Shabi Abbas Zaidi 《Electrophoresis》2013,34(9-10):1375-1382
To extend the application of molecularly imprinted polymers, the dual‐templates molecularly imprinted monolithic columns were developed in a capillary format. Two templates serotonin and histamine were simultaneously imprinted using two different functional monomers such as methacrylic acid (MAA) and methylenesuccinic acid (MSA) in a mixture of ethylene glycol dimethacrylate (EDMA) as a cross‐linker and AIBN as polymerization initiator dissolved in DMF as porogen. The resulting molecular imprinted polymers (MIPs) were characterized based on their performance in the CEC separation of two imprinted templates. The optimization parameters such as pH, ACN composition, and concentration of the eluent were varied to achieve best resolution and efficiency for CEC separation of templates with each MIP column. It was found that the MIP monolith column fabricated using MSA offered better resolution and separation efficiency compared to column fabricated with MAA. This work utilized the dual‐templates imprinting approach successfully and broadens the scope of multi‐templates imprinting capabilities in capillary format in CEC application.  相似文献   

13.
The combination of molecular crowding and virtual imprinting was employed to develop a cost‐effective method to prepare molecularly imprinted polymers. By using linear polymer polystyrene as a macromolecular crowding agent, an imprinted polymer recognizable to punicalagin had been successfully synthesized with punicalin as the dummy template. The resulting punicalin‐imprinted polymer presented a remarkable selectivity to punicalagin with an imprinting factor of 3.17 even at extremely low consumption of the template (template/monomer ratio of 1:782). In contrast, the imprinted polymer synthesized without crowding agent, did not show any imprinting effect at so low template amount. The imprinted polymers made by combination of molecular crowding and virtual imprinting can be utilized for the fast separation of punicalagin from pomegranate husk extract after optimizing the protocol of solid‐phase extraction with the recovery of 85.3 ± 1.2%.  相似文献   

14.
Synthesis of 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane and 1,3,5‐trinitro‐1,3,5‐triazacyclohexane by the Bachmann process leads to a mixture of both. The separation of 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane and 1,3,5‐trinitro‐1,3,5‐triazacyclohexane from their mixture is difficult because the sizes and physical properties of these homologous compounds are similar. For this purpose, seven molecularly imprinted polymers have been synthesized for each explosive, and a selective solid‐phase extraction procedure has been developed. A molecularly imprinted polymer, synthesized with 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane as the template, methacrylic acid as the monomer and trimethylolpropane trimethacrylate as the cross‐linking agent in a molar ratio of 1:8:8 showed the best separation capability. A packed cartridge containing this polymer can be reused for 23 solid‐phase extraction cycles without repacking, and the total separation capability toward 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane reached 6.81 mg per gram of polymer. 1,3,5‐Trinitro‐1,3,5‐triazacyclohexane was not detected in the separated 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane by high‐performance liquid chromatography and vice versa. This newly developed method had the advantages of high recovery (100%) and purity, environmental friendliness, and room temperature operability. This study showed that some molecularly imprinted polymers that cannot absorb target analytes well in the solvent in which the polymers were polymerized might have high‐binding capacity for the analytes and show imprinting effects in other solvents.  相似文献   

15.
4-Hydroxybenzoic acid-imprinted polymers and corresponding reference polymers were synthesized with the use of 4-vinylpyridine, acrylamide, and methacrylic acid as functional monomers. The specific surface area of these materials was estimated, and their sorption properties were studied. It was found that the main factors affecting the sorption capacity of molecularly imprinted polymers are the nature of the functional monomer and the cross-linking agent, the ratio of components in the prepolymerization mixture, and the conditions of sorption. The synthesized materials can be used for the dynamic sorption preconcentration of 4-hydroxybenzoic acid.  相似文献   

16.
Multi‐template molecular imprinting technique was employed for the theoretical study about industrial oil denitrification. Prior to the preparation of multi‐template molecularly imprinted polymers (MT‐MIPs), density functional theory was used for simulating the imprinted pre‐assembly systems composed of template (aniline, indole, or 3‐methylinndole) and monomer [methacrylic acid, acrylamide (AM), and 4‐vinylpyridine]. MT‐MIPs were synthesized as surface MIPs simply and successively by seeded emulsion polymerization or two‐stage precipitation polymerization. The experimental results were consistent with the simulative results, which demonstrated that AM was more suitable monomer together. In addition, seeded emulsion polymerization synthesized MT‐MIPs with better performance compared with two‐stage precipitation polymerization. The adsorption kinetics and adsorption isotherm of MT‐MIP prepared with AM using seeded emulsion polymerization were fitted with different models. The fitting results indicated that pseudo‐second‐order kinetics model and Freundlich isotherm model were suitable for describing the adsorption process of AM seeded emulsion polymerization. This study will provide a certain guidance and theoretical basis for introducing the combination of multi‐template molecular imprinting technique and computational simulation into the field of industrial denitrification. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A dual responsive molecularly imprinted polymer sensitive to both photonic and magnetic stimuli was successfully prepared for the detection of four sulfonamides in aqueous media. The photoresponsive magnetic molecularly imprinted polymer was prepared by surface imprinting polymerization using superparamagnetic Fe3O4 nanoparticles functionalized with a silica layer as a support, water‐soluble 4‐[(4‐methacryloyloxy)phenylazo]benzenesulfonic acid as the functional monomer, and sulfadiazine as the template. The magnetic molecularly imprinted polymers showed specific affinity to sulfadiazine and its structural analogs in aqueous media. Upon alternate irradiation at 365 and 440 nm, the quantitative bind and release of the four sulfonamides by magnetic molecularly imprinted polymers occurred. Furthermore, the prepared magnetic molecularly imprinted polymers were used as solid‐phase extraction material selectively extracted the four sulfonamides from water samples with good recoveries. Thus, a simple, convenient, and reliable detection method for sulfonamides in the environment based on responsive magnetic molecularly imprinted polymers was successfully established.  相似文献   

18.
The system of polyacrylamide incorporated with methacrylic acid and 2-(dimethylamino)ethyl methacrylate was studied for the possibility of imprinting of lysozyme. The results show that approximately 27% (w/w) of the lysozyme template was not able to be extracted from the molecularly imprinted acrylamide polymers. The amount of the lysozyme template able to be extracted was increased by the addition of methacrylic acid. The molecularly imprinted polymer (MIP), which was prepared with 0.573 M acrylamide, 0.573 M methacrylic acid and 0.573 M 2-(dimethylamino)ethyl methacrylate at a total solution concentration of 20% (w/w), was able to adsorb 83% more lysozyme than the non-imprinted polymer. Selectivity of MIP was also studied.  相似文献   

19.
以电子束为辐照射线源,采用辐射聚合法成功制备了槲皮素-Ni(Ⅱ)金属配位分子印迹聚合物.通过紫外光谱研究了槲皮素与Ni(Ⅱ)之间的配位结构、配位作用方式及配位比,并按照1∶2的比例形成稳定配合物,同时也验证了槲皮素、Ni(Ⅱ)及功能单体甲基丙烯酸三者发生了金属配位印迹作用.利用红外光谱对产物的结构进行了表征.透射电镜、扫描电镜、吸附动力学实验分别考察辐射剂量对聚合物的微观形貌、吸附动力学性能的影响,结果表明辐射剂量对印迹聚合物的吸附性能有显著影响.同时选择性吸附实验结果显示该印迹聚合物对槲皮素-Ni(Ⅱ)配合物表现出明显的吸附选择性和特异性,最大结合量可达82.22μmol/g.对黄芩素和柚皮素的吸附选择性较差,分离因子分别为3.915和5.443.  相似文献   

20.
A class‐specific macrolide molecularly imprinted polymer was synthesized by precipitation polymerization using tulathromycin as the template and methacrylic acid as the functional monomer. The polymers revealed different specific adsorption and imprinting factor for macrolides with different spatial arrangement of side chains as well as lactonic ring size. And the molecularly imprinted polymer possessed maximum adsorption capacity (54.1 mg/g) and highest imprinting factor (2.4) toward 15‐membered ring azithromycin. On the basis of molecularly imprinted polymer dispersive solid‐phase extraction, a rapid, selective, and reproducible method for simultaneous determination of seven macrolide antibiotics residues in pork was established by using liquid chromatography with tandem mass spectrometry. At spiking levels of 5, 10, 25, and 100 μg/kg, average recoveries of seven macrolides ranged from 68.6 to 95.5% with intraday and interday relative standard deviations below 8%. The limits of detection and limits of quantification were 0.2–0.5 and 0.5–2.0 μg/kg, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号