首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel polypyrole/graphene oxide coating was made by the electrochemical polymerization of pyrrole in the presence of sodium dodecyl sulfate and graphene oxide on a platinum wire. The prepared fiber has shown a good thermal stability up to 300°C. The fiber was applied to the direct solid‐phase microextraction and gas chromatographic analysis of four phthalate esters. The effect of four parameters on gas chromatography peak area including extraction temperature, extraction time, injection temperature, and ionic strength were investigated. Under the optimized conditions, the detection limits were between 0.042 and 0.26 μg/L. The intraday and interday relative standard deviations obtained at 55 μg/L, using a single fiber, were 8.2–16% and 17.3–25.6%, respectively. The method was successfully applied to the analysis of phthalate esters in two real samples of boiling water in cheap disposable clear plastic drinking cups showing recoveries from 83 to 120%.  相似文献   

2.
A new polyethylene glycol/graphene oxide composite material bonded on the surface of a stainless‐steel wire was used for solid‐phase microextraction. The layer‐by‐layer structure increased the adsorption sites of the novel fiber, which could facilitate the extraction of trace compounds. The polyethylene glycol/graphene oxide was characterized by Fourier transform infrared spectroscopy and elemental analysis, which verified that polyethylene glycol was successfully grafted onto the surface of graphene oxide. The performance of the polyethylene glycol/graphene oxide coated fiber was investigated for phenols and phthalate esters coupled with gas chromatography with flame ionization detection under the optimal extraction and desorption conditions, and the proposed method exhibited an excellent extraction capacity and high thermal stability. Wide linear ranges were obtained for the analytes with good correlation coefficients in the range of 0.9966–0.9994, and the detection limits of model compounds ranged from 0.003 to 0.025 μg/L. Furthermore, the as‐prepared fiber was used to determine the model compounds in the water and soil samples and satisfactory results were obtained.  相似文献   

3.
Heat‐shrink tubing, which shrinks in one plane only (its diameter) when heated, commonly used for sealing protection in electrical engineering, was found to be able to function as a solid‐phase microextraction coating. Its utility was demonstrated for the determination of phthalic acid esters in an aqueous solution combined with high‐performance liquid chromatography equipped with a UV absorbance detector. The preparation procedure was rather simple and only ~10 min was needed. The fiber cost is extremely low (~10 cent each). The parameters affecting the extraction were optimized. Heat‐shrink tubing fiber exhibited a significant enrichment effect for the three examined phthalic acid esters and up to 931‐fold enrichment factor was obtained. The limit of detection was <10 μg/L for all analytes. The operation repeatability and fiber‐to‐fiber reproducibility were 1.2–8.3 and 5.4–9.1%, respectively. It was successfully applied for the analysis of bottled drinking water with recoveries ranging from 90.1–100.5%.  相似文献   

4.
A solid‐phase microextraction fiber was prepared by coating an optical fiber with a temperature‐sensitive polymer to determine phthalate esters. N‐Isopropylacrylamide and N,N′‐methylenebisacrylamide were used as the monomer and the cross linker, respectively. The fabricated fiber was characterized by FTIR spectroscopy, thermogravimetric analysis, and scanning electron microscopy. During extraction, important factors such as extraction time, pH, temperature, and ionic strength were optimized. The fabricated fiber, which is firm, inexpensive, stable, and efficient, is a vital material used in solid‐phase microextraction. Under optimum conditions, the calibration curve was linear and in the range of 1–20 μg/L (r2 = 0.9747). The high extraction efficiency was obtained for phthalates with a detection limit of 0.12 μg/L. The fabricated fiber was successfully applied to the solid‐phase micro extraction of phthalates from water samples after its extraction, followed by gas chromatography with flame ionization detection.  相似文献   

5.
A new kind of magnetic N‐doped mesoporous carbon was prepared by the one‐step carbonization of a hybrid precursor (glucose, melamine, and iron chloride) in a N2 atmosphere with a eutectic salt (KCl/ZnCl2) as the porogen. The obtained magnetic N‐doped mesoporous carbon showed excellent characteristics, such as strong magnetic response, high surface area, large pore volume, and abundant π‐electron system, which endow it with a great potential as a magnetic solid‐phase extraction adsorbent. To evaluate its adsorption performance, the magnetic N‐doped mesoporous carbon was used for the extraction of three phthalate esters from soft drink samples followed by high‐performance liquid chromatographic analysis. Under the optimum conditions, the developed method showed a good linearity (1.0–120.0 ng/mL), low limit of detection (0.1–0.3 ng/mL, S/N = 3), and good recoveries (83.2–119.0%) in soft drink samples. The results indicated that the magnetic N‐doped mesoporous carbon has an excellent adsorption capacity for phthalate esters and the present method is simple, accurate, and highly efficient for the extraction and determination of phthalate esters in complex matrix samples.  相似文献   

6.
Recently the connection between oxidative stress and various diseases, including cancer and Alzheimer's, attracts notice as a pathway suitable for diagnostic purposes. 8‐Oxo‐deoxyguanosine and 8‐oxo‐deoxyadenosine produced from the interaction of reactive oxygen species with DNA become prominent as biomarkers. Several methods have been developed for their determination in biofluids, including solid‐phase extraction and enzyme‐linked immunosorbent assays. However, still, there is a need for reliable and fast analytical methods. In this context, solid‐phase microextraction offers many advantages such as flexibility in geometry and applicable sample volume, as well as high adaptability to high‐throughput sampling. In this study, a solid‐phase microextraction method was developed for the determination of 8‐oxo‐deoxyguanosine and 8‐oxo‐deoxyadenosine in biofluids. The extractive phase of solid‐phase microextraction consisted of hydrophilic–lipophilic balanced polymeric particles. In order to develop a solid‐phase microextraction method suitable for the determination of the analytes in saliva and urine, several parameters, including desorption solvent, desorption time, sample pH, and ionic strength, were scrutinized. Analytical figures of merit indicated that the developed method provides reasonable interday and intraday precisions (<15% in both biofluids) with acceptable accuracy. The method provides a limit of quantification for both biomarkers at 5.0 and 10.0 ng/mL levels in saliva and urine matrices, respectively.  相似文献   

7.
Silicon carbide has excellent properties, such as corrosion resistance, high strength, oxidation resistance, high temperature, and so on. Based on these properties, silicon carbide was coated on stainless‐steel wire and used as a solid‐phase microextraction coating, and polycyclic aromatic hydrocarbons were employed as model analytes. Using gas chromatography, some important factors that affect the extraction efficiency were optimized one by one, and an analytical method was established. The analytical method showed wide linear ranges (0.1–30, 0.03–30, and 0.01–30 μg/L) with satisfactory correlation coefficients (0.9922–0.9966) and low detection limits (0.003–0.03 μg/L). To investigate the practical application of the method, rainwater and cigarette ash aqueous solution were collected as real samples for extraction and detection. The results indicate that silicon carbide has excellent application in the field of solid‐phase microextraction.  相似文献   

8.
In this work, a porous carbon derived from amino‐functionalized material of Institut Lavoisier (C‐NH2‐MIL‐125) was prepared and coated onto a stainless‐steel wire through sol–gel technique. The coated fiber was used for the solid‐phase microextraction of trace levels of phthalate esters (diallyl phthalate, di‐iso‐butyl ortho‐phthalate, di‐n‐butyl ortho‐phthalate, benzyl‐n‐butyl ortho‐phthalate, and bis(2‐ethylhexy) ortho‐phthalate) from tea beverage samples before gas chromatography with mass spectrometric analysis. Several experimental parameters that could influence the extraction efficiency such as extraction time, extraction temperature, sample pH, sample salinity, stirring rate, desorption temperature and desorption time, were investigated. Under the optimal conditions, the linearity existed in the range of 0.05–30.00 μg/L for green jasmine tea beverage samples, and 0.10–30.00 μg/L for honey jasmine tea beverage samples, with the correlation coefficients (r) ranging from 0.9939 to 0.9981. The limits of detection of the analytes for the method were 2.0–3.0 ng/L for green jasmine tea beverage sample, and 4.0–5.0 ng/L for honey jasmine tea beverage sample, depending on the compounds. The recoveries of the analytes for the spiked samples were in the range of 82.0–106.0%, and the precision, expressed as the relative standard deviations, was less than 11.1%.  相似文献   

9.
The surface of a stainless steel fiber was made larger, porous and cohesive by platinizing for tight attachment of its coating. Then it was coated by a polyaniline/polypyrrole/graphene oxide (PANI/PP/GO) nanocomposite film using electrochemical polymerization. The prepared PANI/PP/GO fiber was used for headspace solid‐phase microextraction (HS‐SPME) of linear aliphatic aldehydes in rice samples followed by GC‐FID determination. To achieve the highest extraction efficiency, various experimental parameters including extraction time and temperature, matrix modifier and desorption condition were studied. The linear calibration curves were obtained over the range of 0.05–20 μg g−1 (R 2 > 0.99) for C4–C11 aldehydes. The limits of detection were found to be in the range of 0.01–0.04 μg g−1. RSD values were calculated to be <7.4 and 10.7% for intra‐ and inter‐day, respectively. The superiority of the prepared nanocomposite SPME fiber was established by comparison of its results with those obtained by polydimethylsiloxane, carbowax–divinylbenzene, divinylbenzene–carboxen–polydimethylsiloxane and polyacrylate commercial ones. Finally, the nanocomposite fiber was used to extract and determine linear aliphatic aldehydes in 18 rice samples.  相似文献   

10.
We report the electrochemical fabrication of a poly(2,2‐bithiophene‐co‐3‐methylthiophene)‐graphene composite coating and its application in the headspace solid‐phase microextraction and gas chromatography determination of benzenes (i.e., bromobenzene, 4‐bromotoluene, 2‐nitrotoluene, 3‐nitrotoluene and 1,2,4‐trichlorobenzene). The coating was uniform and showed cauliflower‐like microstructure. It had high thermal stability (up to 375°C) and could be used for at least 180 times of solid‐phase microextraction without a decrease in extraction performance. Furthermore, it presented high extraction capacity for the benzenes due to the hydrophobic effect and π–π interaction between the analytes and the coating. Under optimized extraction conditions, good linearity (correlation coefficients higher than 0.9946), wide linear range (0.01–50 μg/L), and low limits of detection (5.25–12.5 ng/L) were achieved for these analytes. The relative standard deviation was lower than 5.7% for five successive measurements with one fiber, and the relative standard deviation for fiber‐to‐fiber was 4.9–6.8% (n = 5). The solid‐phase microextraction and gas chromatography method was successfully applied for the determination of three real samples, and the recoveries for standards added were 89.6–106% for nail polish, 85.8–110% for hair dye, and 90–106.2% for correction fluid, respectively.  相似文献   

11.
We herein presented a mesoporous cellular foam solid‐phase microextraction coating that showed highly sensitive recognition for weakly polarity polychlorinated biphenyls in water samples. The mesoporous cellular foam coater fiber was for the first time prepared by a simple sol‐gel method. The main experimental parameters including extraction temperature, extraction time, desorption time, stirring rate, and ionic strength were investigated by high‐efficiency orthogonal array design, a L16 (44) matrix was applied for the identification of optimized extraction parameters, and the optimized method was successfully applied to the analysis of environmental water sample. The novel mesoporous cellular foam coated fibers exhibited sensitive limits of detection (0.07–0.28 µg/L), wide linearity (5–3000 µg/L), and good reproducibility (3.5–8.3% for single fiber, and 4.9–8.7% for fiber‐to‐fiber) for polychlorinated biphenyls. The home‐made coating was successfully used in the analysis of polychlorinated biphenyls in real environmental water samples. These results indicate that the synthesized mesoporous cellular foams are promising materials for adsorption and separation applications in sample pretreatment.  相似文献   

12.
Resorcinol–formaldehyde aerogel coating was in situ prepared on the surface of basalt fibers. The aerogel coating is uniformly modified onto basalt fibers, and it is very porous according to the characterization by using scanning electron microscopy. An extraction tube was prepared for in‐tube solid‐phase microextraction by placing the aerogel‐coated basalt fibers into a polyetheretherketone tube. To evaluate the extraction performance toward five estrogenic compounds, the tube was connected with high performance liquid chromatography, the important extraction and desorption conditions were investigated. An online analytical method for detection of estrogens was developed and presented low limits of detection (0.005–0.030 µg/L), wide linear ranges (0.017–20, 0.033–20, and 0.099–20 µg/L), good linearity (r > 0.9990), and satisfactory repeatability (relative standard deviation < 2.7%). The method was successfully applied to detect trace estrogens in real water samples (bottled pure water and bottled mineral water), satisfactory recoveries were ranged from 80 to 125% with two spiking levels of 2 and 6 µg/L.  相似文献   

13.
A novel polystyrene/pyridine composite nanofiber was synthesized and utilized as the sorbent material for the solid‐phase extraction of bisphenol A and five common phthalate esters in milk. The method of extraction integrated extraction and preconcentration of target analytes into a single step. Bisphenol A and five common phthalate esters were selected as target compounds for the development and evaluation of the method. The effects of operating parameters for nanofiber‐based solid‐phase extraction, such as selection and amount of sorbent, the volume fraction of perchlorate (precipitate protein), desorption solvent, volume of desorption solvent, and effect of salt addition were optimized. Under optimal conditions, higher extraction recoveries (89.6–118.0%) of the six compounds in milk spiked at three levels were obtained, and the satisfied relative standard deviation were ranged from 0.6 to 10.9%. The detection limits and quantification limits of the method ranged from 0.01 to 0.06 μg/L and 0.05 to 0.53 μg/L, respectively. Matrix effects were also verified and well controlled in the range of 91.3–109.3%. The new method gave better performance metrics than Chinese standard method and other published methods. Thus, the proposed method may be applied to the analysis of the phthalate esters and bisphenol A in complex matrixes.  相似文献   

14.
Extraction of endogenous compounds and drugs and their corresponding metabolites from complex matrices, such as biofluids and solid tissues, requires adequate analytical approach facilitating qualitative and quantitative analysis. To this end, solid‐phase microextraction has been introduced as modern technology that is capable of efficient and high‐throughput extraction of compounds due to its ability to amalgamate sampling, extraction, and pre‐concentration steps, while requiring minimal use of organic solvents. The ability of solid‐phase microextraction to enable analyses on small‐volume biological samples and growing availability of biocompatible solid‐phase microextraction coatings make it a highly useful technology for variety of applications. For example, solid‐phase microextraction is particularly useful for identifying biomarkers in metabolomics studies, and it can be successfully applied in pharmaceutical and toxicological studies requiring the fast and sensitive determination of drug levels, especially those that are present at low levels in biological matrices such as plasma, urine, saliva, and hair. Moreover, solid‐phase microextraction can be directly applied in in vivo studies because this extraction technique is non‐exhaustive and its biocompatible probes offer minimal invasiveness to the analyzed system. In this article, we review recent progress in well‐established solid‐phase microextraction technique for in vitro and in vivo analyses of various metabolites and drugs in clinical, pharmaceutical, and toxicological applications.  相似文献   

15.
A novel solid‐phase microextraction fiber was synthesized by coating a stainless steel wire with polyoxomolybdate368/polyaniline as a sorbent aimed at extraction of amitriptyline, nortriptyline, and doxepin as antidepressant drugs from urine and blood samples. The polyoxomolybdate368/polyaniline composite coating was applied using electropolymerization process under constant potential. This composition leads to enhanced extraction efficiency of the fiber. Scanning electron microscopy images show that huge three‐dimensional structures of polyoxomolybdate368 in composite induced more non‐smooth and porous fiber. In order to optimize of the extraction process, a series of variables including concentration of the composite materials, coating thickness, pH, extraction time, salt addition, and stirring rate was investigated and optimum conditions were determined. Analysis of surface morphology and chemical composition was performed. High‐performance liquid chromatography was used for separation and evaluation of mentioned antidepressant drugs from the matrixes. The experiments indicated a detection limits of <0.2 ng/L and a linear dynamic range of 0.3–100 ng/L (R> 0.994). The relative recovery values were found to be in the range of 92–98%. It was concluded that the purposed fiber is highly efficient in analyzing traces of antidepressant drugs in urine and blood.  相似文献   

16.
A high‐performance metal oxide polymer magnetite/polyethylene glycol nanocomposite was prepared and coated in situ on the surface of the optical fiber by sol–gel technology. The magnetite nanoparticles as nanofillers were synthesized by a coprecipitation method and bonded with polyethylene glycol as a polymer. The chemically bonded coating was evaluated for the headspace solid–phase microextraction of some environmentally important volatile organic compounds from aqueous samples in combination with gas chromatography and mass spectrometry. The prepared fiber was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The mass ratio of nanofiller and polymer on the coating extraction efficiency, morphology, and stability were investigated. The parameters affecting the extraction efficiency, including the extraction time and temperature, the ionic strength, desorption temperature, and time were optimized. The sol–gelized fiber showed excellent chemical stability and longer lifespan. It also exhibited high extraction efficiency compared to the two types of commercial fibers. For volatile organic compounds analysis, the new fiber showed low detection limits (0.008–0.063 ng/L) and wide linearity (0.001–450 × 104 ng/L) under the optimized conditions. The repeatability (interday and intraday) and reproducibility were 4.13–10.08 and 5.98–11.61%, and 7.35–14.79%, respectively (n = 5). For real sample analysis, three types of water samples (ground, surface, and tap water) were studied.  相似文献   

17.
A poly(vinylphenylboronic acid–ethylene glycol dimethacrylate) monolithic material incorporated with graphene oxide was synthesized inside a poly(ether ether ketone) tube. This tube with boronate affinity monolith was coupled with a high‐performance liquid chromatography system through a six‐port valve to construct an online solid‐phase microextraction with high‐performance liquid chromatography system. The performance of this solid‐phase microextraction with high‐performance liquid chromatography system was demonstrated by standard glycoprotein in aqueous samples, namely, horseradish peroxidase. Some parameters that affect the extraction performance were investigated, including sampling rate, pH of sample solution, and sampling volume. Under the optimized conditions, the developed method showed high extraction efficiency toward horseradish peroxidase. The addition of graphene oxide greatly increased the extraction efficiency of boronate affinity monolith for horseradish peroxidase. The limit of detection of the proposed method was as low as 0.01 μg/mL by using ultraviolet detection. The recognition specificity was also evaluated by analyzing the mixture of bovine serum albumin (nonglycoprotein) and horseradish peroxidase. The results showed that this material could selectively extract horseradish peroxidase from the mixture, indicating its good specificity toward glycoproteins. The proposed method was further applied for analyzing rat plasma samples spiked with horseradish peroxidase. Good recovery and repeatability were obtained.  相似文献   

18.
In this work, ZnO/PPy nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid phase microextraction (HS-SPME) fiber coating for extraction of ultra-trace amounts of environmental pollutants; namely, aliphatic hydrocarbons in water and soil samples. The ZnO/PPy nanocomposite were prepared by a two-step process including the electrochemical deposition of PPy on the surface of stainless steel in the first step, and the synthesis of ZnO nanorods by hydrothermal process in the pores of PPy matrix in the second step. Porous structure together with ZnO nanorods with the average diameter of 70 nm were observed on the surface by using scanning electron microscopy (SEM). The effective parameters on HS-SPME of hydrocarbons (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one-variable-at-a-time method. Under optimized conditions (extraction temperature, 65 ± 1 °C; extraction time, 15 min; desorption temperature, 250 °C; desorption time, 3 min; salt concentration, 10% w/v; and stirring rate, 1200 rpm), the limits of detection (LODs) were found in the range of 0.08–0.5 μg L−1, whereas the repeatability and fiber-to-fiber reproducibility were in the range 5.4–7.6% and 8.6–10.4%, respectively. Also, the accuracies obtained for the spiked n-alkanes were in the range of 85–108%; indicating the absence of matrix effects in the proposed HS-SPME method. The results obtained in this work suggest that ZnO/PPy can be promising coating materials for future applications of SPME and related sample preparation techniques.  相似文献   

19.
Headspace solid‐phase microextraction is a solvent‐free sample preparation technique that is based on the equilibrium among a three‐phase system, i.e., sample‐headspace‐fiber. A compromise between sensitivity and extraction time is usually needed to optimize the sample throughput, especially when a large number of samples are analyzed, as usually the case in cross‐samples studies. This work explores the capability of multiple‐cumulative trapping solid‐phase microextraction on the characterization of the aroma profiling of olive oils, exploiting the automation capability of a novel headspace autosampler. It was shown that multiple‐cumulative solid‐phase microextraction has the potential to improve the overall sensitivity and burst the level of information for cross‐sample studies by using cumulative shorter extraction times.  相似文献   

20.
The aim of this study was to synthesize a highly efficient organic–inorganic nanocomposite. In this research, the carbon nanotube/magnetite/polyaniline nanocomposite was successfully prepared through a facile route. Monodisperse magnetite nanospheres were prepared through the coprecipitation route, and polyaniline nanolayer as a modified shell with a high surface area was synthesized by an in situ growth route and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, and energy‐dispersive X‐ray spectroscopy. The prepared nanocomposite was immobilized on a stainless‐steel wire for the fabrication of the solid‐phase microextraction fiber. The combination of headspace solid‐phase microextraction using carbon nanotube/magnetite/polyaniline nanocomposite fiber with gas chromatography and mass spectrometry can achieve a low limit of detection and can be applied to determine phenolic compounds in water samples. The effects of the extraction and desorption parameters including extraction temperature and time, ionic strength, stirring rate, pH, and desorption temperature and time have been studied. Under the optimum conditions, the dynamic linear range was 0.01–500 ng/mL and the limits of detection of phenol, 4‐chlorophenol, 2,6‐dichlorophenol, and 2,4,6‐trichlorophenol were the lowest (0.008 ng/mL) for three times. The coefficient of determination of all calibration curves was more than 0.990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号