首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The "living"/controlled radical polymerization has provided an opportunity in making a more homogeneous polymer, which is favorable for polymer-based monolithic column fabrication. To study its application in the preparation of separation material, a capillary poly(ethylhexyl methacrylate-co-ethylene dimethacrylate) monolithic column has been synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The correlation between the synthetic conditions and the polymer structures and separation performance was studied. The result indicated RAFT-mediated reaction provides condition for creating polymers with narrower pore size distribution and higher column efficiency compared with traditional polymerization. The "living" property of the RAFT polymerization was further utilized to graft hydrophilic polymer on the surface of poly(ethylhexyl methacrylate-co-ethylene dimethacrylate). The hydrophilic chain modified monolithic column has both abilities of protein exclusion and small hydrophobic compound retention. The result indicated that RAFT polymerization can be used for making multifunctional material. The restricted access monolithic material synthesized by this method can be used in biological sample analysis with HPLC direct injection.  相似文献   

2.
In this study, novel monodisperse restricted access media‐molecularly imprinted polymers were successfully prepared by surface initiated reversible addition‐fragmentation chain transfer polymerization using monodisperse crosslinked poly (glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) microspheres as the carrier and acryloyl chloride‐modified β‐cyclodextrin as the hydrophilic functional monomer. The surface morphology, protein exclusion, and adsorption properties of the molecularly imprinted polymers were investigated. The results show that the material has excellent monodispersity and hydrophilicity, and simultaneously exhibit high adsorption capacity, fast binding kinetics, high selectivity, and significant thermal stability. The molecularly imprinted polymers as dispersive solid‐phase extraction adsorbent combined with reversed‐phase high‐performance liquid chromatography was used to selectively enrich, separate, and analyze trace 17β‐estradiol in milk samples. The recovery of 17β‐estradiol is 88–95% with relative standard deviation of <4%, and the limits of detection and quantification of this method are 2.08 and 9.29 µg/L, respectively. The novel restricted access media‐molecularly imprinted polymer adsorbents provide an effective method for the selective extraction and detection of 17β‐estradiol directly from complex samples.  相似文献   

3.
An ion‐exchanger with polyanionic molecular brushes was synthesized by a “grafting from” route based on “surface‐controlled reversible addition‐fragmentation chain transfer polymerization” (RAFT). The RAFT agent, PhC(S)SMgBr was covalently attached to monodisperse‐porous poly(dihydroxypropyl methacrylate‐co‐ethylene dimethacrylate), poly(DHPM‐co‐EDM) particles 5.8 μm in size. The monomer, 3‐sulfopropyl methacrylate (SPM), was grafted from the surface of poly(DHPM‐co‐EDM) particles with an immobilized chain transfer agent by the proposed RAFT protocol. The degree of polymerization of SPM (i. e. the molecular length of the polyanionic ligand) on the particles was controlled by varying the molar ratio of monomer/RAFT agent. The particles carrying polyanionic molecular brushes with different lengths were tested as packing material in the separation of proteins by ion exchange chromatography. The columns packed with the particles carrying relatively longer polyanionic ligands exhibited higher separation efficiency in the separation of four proteins. Plate heights between 130–200 μm were obtained. The ion‐exchanger having poly‐(SPM) ligand with lower degree of polymerization provided better peak‐resolutions on applying a salt gradient with higher slope. The molecular length and the ion‐exchanger group content of polyionic ligand were adjusted by controlling the degree of polymerization and the grafting density, respectively. This property allowed control of the separation performance of the ion‐exchanger packing.  相似文献   

4.
A novel, facile, and efficient one‐step copolymerization strategy was developed for the preparation of β‐cyclodextrin (β‐CD) methacrylate monolithic columns using click chemistry. The novel mono‐(1H‐1,2,3‐triazol‐4‐ylmethyl)‐2‐methylacryl‐β‐CD monomer was synthesized by a click reaction between propargyl methacrylate and mono‐6‐azido‐β‐CD, and then monolithic columns were prepared through a one‐step in situ copolymerization of the mono‐(1H‐1,2,3‐triazol‐4‐ylmethyl)‐2‐methylacryl‐β‐CD monomer and ethylene dimethacrylate. The physicochemical properties and column performance of the fabricated monolithic columns were characterized by elemental analysis, SEM, and micro‐HPLC. Satisfactory column permeability, efficiency, and separation performance were obtained for the optimized poly(mono‐(1H‐1,2,3‐triazol‐4‐ylmethyl)‐2‐methylacryl‐β‐CD‐co‐ethylene dimethacrylate) monolithic columns. Additionally, typical hydrophilic interaction chromatography retention behavior was observed on the monoliths at high acetonitrile content in the mobile phase. Although the enantioselectivity of our monolithic columns did not meet the level of other reported β‐CD monolithic columns, this one‐step strategy based on click chemistry still provides an interesting and effective model as it offers the possibility to easily prepare related novel CD methacrylate monoliths through a one‐step copolymerization strategy.  相似文献   

5.
Novel reversible networks utilizing photodimerization of crosslinkable anthracene groups and thermal dissociation were investigated. Reversible addition‐fragmentation chain transfer polymerization yielded well‐defined copolymers with 9‐anthrylmethyl methacrylate (AMMA) and other alkyl methacrylates such as methyl methacrylate (MMA) and 2‐ethylhexyl methacrylate (EHMA) having different AMMA compositions. Well‐controlled block copolymerization of AMMA and alkyl methacrylates was also successfully accomplished using a trithiocarbonate‐terminated poly(alkyl methacrylate) macro‐chain transfer agent. The anthracene‐containing copolymers showed reversibility via crosslinking based on photodimerization with ultraviolet irradiation and subsequent thermal dissociation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2302–2311  相似文献   

6.
A novel (3‐sulfopropyl methacrylate potassium)‐silica hybrid monolithic column for CEC has been prepared by a simple one‐pot approach based on efficient thiol‐ene click chemistry. In this process, the polycondensation of hydrolyzed alkoxysilanes and in situ click reaction of vinyl groups on 3‐sulfopropyl methacrylate potassium and thiol groups on the precondensed siloxanes simultaneously occurred in a pretreated capillary. Homogeneous monolithic matrix with large through‐pores tightly bonded to the inner wall of the capillary was shown by optical microscope and SEM. The minimum plate height of this hybrid monolithic column was determined as 3.9 μm for thiourea. Anilines, alkylbenzenes, and phenols were well separated on this hybrid monolithic column by CEC, which indicated typical reversed‐phase and cation‐exchange chromatographic retention mechanisms of the column.  相似文献   

7.
To further evaluate the feasibility and applicability of the one‐pot strategy in monolithic column preparation, two novel β‐cyclodextrin‐functionalized organic polymeric monoliths were prepared using two β‐cyclodextrin derivatives, i.e. mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin and heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin. In this improved method, mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin or heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin reacted with glycidyl methacrylate to generate the corresponding functional monomers and were subsequently copolymerized with ethylene dimethacrylate. The polymerization conditions for both monoliths were carefully optimized to obtain satisfactory column performance with respect to column efficiency, reproducibility, permeability, and stability. The obtained poly(glycidyl methacrylate‐mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) and poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monoliths exhibited a uniform structure, good permeability, and mechanical stability as indicated by scanning electron microscopy and micro‐high‐performance liquid chromatography experimental results. Because of the probable existence of multi‐glycidyl methacrylate linking spacers on the poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monolith, the effect of the ratio of glycidyl methacrylate/heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin was especially studied, and satisfactory reproducibility could still be achieved by strictly controlling the composition of the polymerization mixture. To investigate the effect of the degree of amino substitution of β‐cyclodextrin on column performance, a detailed comparison of the two monoliths was also carried out using series of analytes including small peptides and chiral acids. It was found that the β‐cyclodextrin‐functionalized monolith with mono‐glycidyl methacrylate linking spacers demonstrated better chiral separation performance than that with multi‐glycidyl methacrylate linking spacers.  相似文献   

8.
A restricted‐access material–hybrid monolithic column was prepared based on single‐component organosiloxane and dynamic grafting of δ‐gluconolactone for on‐line solid phase extraction of tetracycline antibiotic residues from milk. The hybrid monolithic column was prepared in a stainless‐steel chromatographic column using methyltrimethoxysilane as the single precursor. δ‐Gluconolactone was covalently coupled to aminopropyl derivatized hybrid monolithic column, which formed hydrophilic structures on the surface of the pore of the restricted‐access material–hybrid monolithic column. The columns were characterized by scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, nitrogen adsorption, contact angle analysis, dynamic adsorption, and chromatographic performance evaluation. The restricted‐access material–hybrid monolithic column was applied to the on‐line extraction of tetracycline residues from milk. An enrichment factor of 15.8 and a good sample clean‐up effect were obtained under the optimized conditions. The recoveries of the three spiked milk samples were between 81.7 and 102.5% with relative standard deviations (n = 3) in the range of 2–5%. The limits of detection (S/N = 3) for target compounds were in the range of 3.80–9.03 μg/kg. The results show that the on‐line extraction using the restricted‐access material–hybrid monolithic column was powerful for food sample pretreatment with high selectivity and good clean‐up effect.  相似文献   

9.
Well‐defined, high‐density poly(2‐(2‐methoxyethoxy)ethyl methacrylate) [poly(MEO2MA)] brushes were fabricated through a reliable strategy by the combination of self‐assembly of a monolayer of 3‐aminopropyltrimethoxy silane on silicon surface to immobilize 4‐cyano‐4‐(dodecylsulfanylthiocarbonyl)sulfanyl pentanoic acid chain transfer agent and reversible addition‐fragmentation chain transfer‐mediated polymerization of MEO2MA. The whole fabrication process of the poly(MEO2MA) brushes was followed by water contact angle, grazing angle‐Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and atomic force microscopy. Characterization of the poly(MEO2MA) brushes, such as molecular weight and thickness determination, were measured by gel permeation chromatography and ellipsometry, and the grafting density was estimated. The temperature‐responsive property of the poly(MEO2MA) brushes was further investigated and the result verified the brush‐to‐mushroom phase transition of the poly(MEO2MA) chains from low to high temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
In this study, vinyl phenyl boronic acid modified lauryl methacrylate‐based monolithic column was successfully prepared for cation exchange/hydrophobic interaction monolithic chromatography of small molecules and proteins in nano LC. The polymeric mixture consisted of lauryl methacrylate, vinyl phenyl boronic acid as cation exchanger, ethylene dimethacrylate as cross‐linker, polyethylene glycol and methanol as binary porogenic solvent, and azobisisobutyronitrile as initiator. The resulting monolith showed good permeability and mechanical stability. Different ratios of monomer and porogens were used for optimizing the properties of the column. The monolithic column performance with respect to hydrophobic and cation exchange interactions was assessed by the separation a series of alkyl benzenes and anilines, respectively. cis‐Diol‐containing compounds such as phenols were also utilized to evaluate the retention behaviors of the vinyl phenyl boronic acid modified monolithic column. The monolithic column showed cation exchange interactions in the separation of aniline compounds. Theoretical plate number up to 52 000 plates/m was successfully achieved. The prepared monolith was further applied to the proteins with different acetonitrile content.  相似文献   

11.
Linear triblock terpolymers of poly(n‐butyl methacrylate)‐b‐poly(methyl methacrylate)‐b‐poly(2‐fluoroethyl methacrylate) (PnBMA‐PMMA‐P2FEMA) were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization. Kinetic studies of the homopolymerization of 2FEMA by RAFT polymerization demonstrated controllable characteristics with fairly narrow polydispersities (~1.30). The resultant PnBMA‐PMMA‐P2FEMA triblock terpolymers were characterized via 1H NMR, 19F NMR, and gel permeation chromatography. These polymers formed micellar aggregates in a selective solvent mixture. The as‐formed micelles were analyzed using scanning electron microscopy and dynamic light scattering. It was found that these terpolymers could directly self‐organize into complex micelles in a tetrahydrofuran/methanol mixture with diameters that depended on polymer composition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
We report the direct homopolymerization and block copolymerization of 2‐aminoethyl methacrylate (AEMA) via aqueous reversible addition‐fragmentation chain transfer (RAFT) polymerization. The controlled “living” polymerization of AEMA was carried out directly in aqueous buffer using 4‐cyanopentanoic acid dithiobenzoate (CTP) as the chain transfer agent (CTA), and 2,2′‐azobis(2‐imidazolinylpropane) dihydrochloride (VA‐044) as the initiator at 50 °C. The controlled “living” character of the polymerization was verified with pseudo‐first order kinetic plots, a linear increase of the molecular weight with conversion, and low polydispersities (PDIs) (<1.2). In addition, well‐defined copolymers of poly(AEMA‐b‐HPMA) have been prepared through chain extension of poly(AEMA) macroCTA with N‐(2‐hydroxypropyl)methacrylamide (HPMA) in water. It is shown that the macroCTA can be extended in a controlled fashion resulting in near monodisperse block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5405–5415, 2009  相似文献   

13.
《先进技术聚合物》2018,29(8):2273-2280
Multiresponsive amphiphilic poly(N,N‐dimethylaminoethyl methacrylate)‐b‐poly(N‐isopropylacrylamide) (PDMAEMA‐b‐PNIPAM) was successfully synthesized by reversible addition‐fragmentation chain transfer polymerization. Poly(N,N‐dimethylaminoethyl methacrylate)‐b‐poly(N‐isopropylacrylamide) has thermal and pH stimuli responsiveness. Their lower critical solution temperature and hydrodynamic radius can be adjusted by varying the copolymer composition, block length, solution pH, and temperature. In addition, a convenient method has been established to prepare cross‐linked silica‐coated nanoparticles with PDMAEMA‐b‐PNIPAM micelles as a template, resulting in good organic/inorganic hybrid nanoparticles defined as 175 to 220 nm. The structure and morphology were characterized by proton nuclear magnetic resonance (1HNMR), Fourier‐transform infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), and transmission electron microscopy‐energy dispersive X‐ray spectroscopy (TEM‐EDS).  相似文献   

14.
A series of new reversible addition–fragmentation chain transfer (RAFT) agents with cyanobenzyl R groups were synthesized. In comparison with other dithioester RAFT agents, these new RAFT agents were odorless or low‐odor, and this made them much easier to handle. The kinetics of methyl methacrylate radical polymerizations mediated by these RAFT agents were investigated. The polymerizations proceeded in a controlled way, the first‐order kinetics evolved in a linear fashion with time, the molecular weights increased linearly with the conversions, and the polydispersities were very narrow (~1.1). A poly[(methyl methacrylate)‐block‐polystyrene] block copolymer was prepared (number‐average molecular weight = 42,600, polydispersity index = 1.21) from a poly(methyl methacrylate) macro‐RAFT agent. These new RAFT agents also showed excellent control over the radical polymerization of styrenics and acrylates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1535–1543, 2005  相似文献   

15.
A new graft copolymer, poly(2‐hydroxyethyl methacrylate‐co‐styrene) ‐graft‐poly(?‐caprolactone), was prepared by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with coordination‐insertion ring‐opening polymerization (ROP). The copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDTB) using AIBN as initiator. The molecular weight of poly (2‐hydroxyethyl methacrylate‐co‐styrene) [poly(HEMA‐co‐St)] increased with the monomer conversion, and the molecular weight distribution was in the range of 1.09 ~ 1.39. The ring‐opening polymerization (ROP) of ?‐caprolactone was then initiated by the hydroxyl groups of the poly(HEMA‐co‐St) precursors in the presence of stannous octoate (Sn(Oct)2). GPC and 1H‐NMR data demonstrated the polymerization courses are under control, and nearly all hydroxyl groups took part in the initiation. The efficiency of grafting was very high. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5523–5529, 2004  相似文献   

16.
The reversible addition–fragmentation chain transfer (RAFT) polymerizations of 2‐naphthyl acrylate (2NA) initiated by 2,2′‐azobisisobutyronitrile were investigated with 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) as a RAFT agent at various temperatures in a benzene solution. The results of the polymerizations showed that 2NA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion. The polydispersities of the polymer were relatively low up to high conversions in all cases. The chain‐extension reactions of poly(2‐naphthyl acrylate) (P2NA) with methyl methacrylate and styrene successfully yielded poly(2‐naphthyl acrylate)‐b‐poly(methyl methacrylate) and poly(2‐naphthyl acrylate)‐b‐polystyrene block polymers, respectively, with narrow polydispersities. The P2NA obtained by RAFT polymerization had a strong ultraviolet absorption at 270 nm, and the molecular weights had no apparent effect on the ultraviolet absorption intensities; however, the fluorescence intensity of P2NA increased as the molecular weight increased and was higher than that of 2NA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2632–2642, 2005  相似文献   

17.
Dual thermo‐ and pH‐sensitive network‐grafted hydrogels made of poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) network and poly(N‐isopropylacrylamide) (PNIPAM) grafting chains were successfully synthesized by the combination of atom transfer radical polymerization (ATRP), reversible addition‐fragmentation chain transfer (RAFT) polymerization, and click chemistry. PNIPAM having two azide groups at one chain end [PNIPAM‐(N3)2] was prepared with an azide‐capped ATRP initiator of N,N‐di(β‐azidoethyl) 2‐chloropropionylamide. Alkyne‐pending poly(N,N‐dimethylaminoethyl methacrylate‐co‐propargyl acrylate) [P(DMAEMA‐co‐ProA)] was obtained through RAFT copolymerization using dibenzyltrithiocarbonate as chain transfer agent. The subsequent click reaction led to the formation of the network‐grafted hydrogels. The influences of the chemical composition of P(DMAEMA‐co‐ProA) on the properties of the hydrogels were investigated in terms of morphology and swelling/deswelling kinetics. The dual stimulus‐sensitive hydrogels exhibited fast response, high swelling ratio, and reproducible swelling/deswelling cycles under different temperatures and pH values. The uptake and release of ceftriaxone sodium by these hydrogels showed both thermal and pH dependence, suggesting the feasibility of these hydrogels as thermo‐ and pH‐dependent drug release devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
This investigation reports the preparation and characterization of thermally amendable functional polymer bearing furfuryl functionality via reversible‐addition fragmentation and chain transfer (RAFT) polymerization and Diels‐Alder (DA) reaction. In this case, furfuryl methacrylate (FMA) was polymerized using 4‐cyano‐4‐[(dodecylsulfanylthiocarbonyl)sulfanyl] pentanoic acid as RAFT reagent and 4,4′‐azobis(4‐cyanovaleric acid) as thermal initiator. 1H NMR, 13C NMR, and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry analysis showed that furfuryl group in poly(furfuryl methacrylate) (PFMA) was not affected during RAFT polymerization and the tailor‐made polymer had RAFT end group. The DA reaction was successfully carried out between the reactive furfuryl functionality of PFMA and different bismaleimides. The thermoreversible property of these DA polymers was characterized by FT‐IR and DSC analysis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3365–3374  相似文献   

19.
A novel POSS‐containing methacrylate monomer (HEMAPOSS) was fabricated by extending the side chain between polyhedral oligomeric silsesquioxane (POSS) unit and methacrylate group, which can efficiently decrease the steric hindrance in free‐radical polymerization of POSS‐methacrylate monomer. POSS‐containing homopolymers (PHEMAPOSS) with a higher degree of polymerization (DP) can be prepared using HEMAPOSS monomer via reversible addition–fragmentation chain transfer (RAFT) polymerization. PHEMAPOSS was further used as the macro‐RAFT agent to construct a series of amphiphilic POSS‐containing poly(N, N‐dimethylaminoethyl methacrylate) diblock copolymers, PHEMAPOSS‐b‐PDMAEMA. PHEMAPOSS‐b‐PDMAEMA block copolymers can self‐assemble into a plethora of morphologies ranging from irregular assembled aggregates to core‐shell spheres and further from complex spheres (pearl‐necklace‐liked structure) to large compound vesicles. The thermo‐ and pH‐responsive behaviors of the micelles were also investigated by dynamic laser scattering, UV spectroscopy, SEM, and TEM. The results reveal the reversible transition of the assembled morphologies from spherical micelles to complex micelles was realized through acid‐base control. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2669‐2683  相似文献   

20.
A series of fluorine‐containing amphiphilic diblock copolymers comprising hydrophobic poly(p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate) (PTPFCBPMA) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments were synthesized via successive reversible addition fragmentation chain transfer (RAFT) polymerizations. RAFT homopolymerization of p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate was first initiated by 2,2′‐azobisisobutyronitrile using cumyl dithiobenzoate as chain transfer agent, and the results show that the procedure was conducted in a controlled way as confirmed by the fact that the number‐average molecular weights increased linearly with the conversions of the monomer while the polydispersity indices kept below 1.30. Dithiobenzoate‐capped PTPFCHPMA homopolymer was then used as macro‐RAFT agent to mediate RAFT polymerization of 2‐(diethylamino)ethyl methacrylate, which afforded PTPFCBPMA‐b‐PDEAEMA amphiphilic diblock copolymers with different block lengths and narrow molecular weight distributions (Mw/Mn ≤ 1.28). The critical micelle concentrations of the obtained amphiphilic diblock copolymers were determined by fluorescence spectroscopy technique using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of the formed micelles were investigated by transmission electron microscopy and dynamic light scattering, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号