首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用于生物电化学系统的石墨烯电极新进展   总被引:1,自引:0,他引:1  
可持续社会的发展需要成本低, 并从废物或废水中提取能源或将能源转化为产品的环境友好技术. 近年兴起的生物电化学系统(BESs)利用微生物催化不同电化学反应, 是将废物或废水中能量转化为电能等多种产品的发展前景广阔的新技术. 当有关反应的吉布斯自由能小于零, 系统输出电能, 此时的BESs即为微生物燃料电池(MFCs); 相反, 若反应的吉布斯自由能为正值, 此时的BESs被称为微生物电解电池(MECs). 随着研究工作的不断深入和拓展, BESs的电极性能已成为制约其应用的瓶颈. 石墨烯以其独特的结构和优异的材料性能在BESs领域, 特别是MFCs中得以应用. 本文参考了最新的文献资料, 综述了石墨烯应用于BESs的发展现状, 包括应用于MFCs的石墨烯电极、掺杂石墨烯电极、担载石墨烯电极, 对其在MECs中可能的应用, 以及未来发展趋势予以展望.  相似文献   

2.
生物电化学系统(BESs)的核心是生物膜在电极/溶液界面的电子传递反应,研究生物膜微区环境中的电子传递有助于阐明微生物的胞外电子传递(EET)机制,从而有针对性地提高BESs中的电子转移效率。微生物的EET机制包括直接电子传递和间接电子传递,由于生物膜组成复杂,含有多种分泌物、胞外聚合物等,常规电化学方法只能从生物膜宏观层面研究EET机制,无法有效区分这两种电子传递途径的贡献。本文采用电化学循环伏安方法研究了电子穿梭体二茂铁甲醇(FcMeOH)与希瓦氏菌(Shewanella)相互作用的界面过程;基于扫描电化学显微技术构建了穿透模式,通过微电极介导FcMeOH与Shewanella反应,收集仅来自间接电子传递途径产生的电流,同时测定了Shewanella在电极/溶液界面的氧化还原性质和空间分布。本论文将电化学扫描探针显微技术应用于EET的研究,从物理化学角度揭示微生物在代谢过程中与外界的电子传输机制。  相似文献   

3.
Electroactive microbial biofilms and the microorganisms embedded therein are not only of crucial fundamental interest because they play an important role in redox cycles that occur in nature, they are also attracting increasing attention as key component of microbial bioelectrochemcial systems (BES). In these systems, interconversion of chemical and electrical energy and the associated exchange of electrons between living microbial cells and solid electrodes take place. The fascinating prospects and promise of BES technology have considerably increased the research on electroactive microbial biofilms over recent years. As a consequence, the research community is truly multifaceted, with backgrounds and interests ranging from molecular biology, via chemistry, to engineering. One of the most‐important and most‐widespread applied electrochemical techniques is cyclic voltammetry (CV). This Focus Review illustrates the power of this electrochemical technique and the versatility of the information that can be gained by its application for the electrochemical freshman. This Review will also pinpoint hurdles in using this technique, especially for the non‐electrochemist, and the limitations of present models for data analysis. Because it aims to be a basic introduction, this Review will not discuss the latest intricacies in the field.  相似文献   

4.
研究了在空气阴极微生物燃料电池中修饰方法如硝酸处理和硝酸-氨水酸碱等对XC-72R作为阴极氧还原催化剂催化活性的影响,并且使用傅里叶变换红外光谱(FTIR)、Boehm滴定法和X射线光电子能谱(谱(XPS)等手段对催化剂进行了表征.FTIR测试证明硝酸处理可引入含氧基团氨水处理可引入含氮基团.另外,还测试了含有不同表面官能团的XC-72R对氧还原的活性,并将其作为阴极催化剂用在MFC中,测试了电池性能.实验表明,经酸碱修饰的XC-72R作为空气阴极MFC的催化剂具有很好的应用前景.  相似文献   

5.
The performance of iron(II) phthalocyanine (FePc) and cobalt tetramethoxyphenylporphyrin (CoTMPP) based oxygen reduction catalysts was studied in view of the application as cathode materials in microbial fuel cells. Galvanostatic and potentiostatic experiments were performed in order to compare the proposed materials to platinum and hexacyanoferrate(III) based systems. Additionally, two-chamber microbial fuel cell experiments were carried out to demonstrate that the transition metal based materials are well suitable to fully substitute the traditional cathode materials in microbial fuel cells.  相似文献   

6.
High quality inoculants used as bio-fertilisers and bio-pesticides depend on having high concentrations of the microorganism(s), long shelf-life and a formulation appropriate for field delivery. To maintain the microorganisms in a viable state, commercially available carrier materials are typically based on milled peat, clays, rice, bran, seeds, or other complex organic matrices. To manufacture a high quality microbial product, it is essential that the carrier material is pre-packaged and pre-sterilised. This allows for non-competitive multiplication and maintenance of the microorganisms in a nutrient rich environment. This paper reports on the efficacy and problems inherent in the sterilisation of complex carbon-based carrier materials such as peat. Resident microbial survivors of gamma irradiation doses in excess of 50 kGy, commonly Gram positive spore-formers such as Bacillus or actinomycetes were consistently observed.  相似文献   

7.
Anode electrodes play a key role in generating electricity from microbial fuel cells (MFCs) because they directly affect microbial activities. This communication reports the preparation of nitrogen-doped carbon nanotubes with a bamboo-like nanostructure (Bamboo-NCNTs) by catalytic pyrolysis of ethylene diamine and application of the Bamboo-NCNTs as anode-modifying materials in MFCs. The Bamboo-NCNTs significantly improved performance of an MFC in current production and power output, and reduced internal resistance of the anode compared with conventional CNTs-modified and unmodified anodes. The improved performance could be attributed to the increased active sites induced by multiple joint structures and enhanced biocompatibility originated from nitrogen dopant.  相似文献   

8.
Supercapacitive microbial fuel cells (SC-MFCs) are an emerging and promising field that has captured the attention of scientists in the past few years. This hybridization consists in the integration of supercapacitive features in the MFC electrodes to boost the performance output. The MFC anaerobic and aerobic enviroments induce self-polarization of the electrodes. The electrodes can be discharged galvanostatically and then self-recharged by the biotic/abiotic environments. During the discharge, two main phenomena named electrostatic and faradaic take place but the separation and quantification of the two contributes seems to be challenging. Galvanostatic discharges of SC-MFC produce at least one order of magnitude higher current/power compared with continuous operations, making it promising for pulsed type applications.  相似文献   

9.
Layered carbon fiber mats have been prepared by layer-by-layer (LBL) electrospinning of polyacrylonitrile onto thin natural cellulose paper and subsequent carbonization. The layered carbon fiber mat has been proved to be a promising microbial fuel cell anode for high density layered biofilm propagation and high bioelectrocatalytic anodic current density.  相似文献   

10.
Microbial fuel cell (MFC) is a promising approach that could utilize microorganisms to oxidize biodegradable pollutants in wastewater and generate electrical power simultaneously. Introducing advanced anode nanomaterials is generally considered as an effective way to enhance MFC performance by increasing bacterial adhesion and facilitating extracellular electron transfer (EET). This review focuses on the key advances of recent anode modification materials, as well as the current understanding of the microbial EET process occurring at the bacteria-electrode interface. Based on the difference in combination mode of the exoelectrogens and nanomaterials, anode surface modification, hybrid biofilm construction and single-bacterial surface modification strategies are elucidated exhaustively. The inherent mechanisms may help to break through the performance output bottleneck of MFCs by rational design of EET-related nanomaterials, and lead to the widespread application of microbial electrochemical systems.  相似文献   

11.
Since the microbial fuel cells (MFCs) research in the laboratory has reached an unprecedented success, it has raised a research upsurge internationally in recent years. However, compared with laboratory studies, the widespread applications of the conventional MFCs were restrained by the limitations of high cost and low efficiency. This stimulates researchers to overcome the obstacles. In this condition, bio-cathodes attracted their great interests. This paper is a brief review about the experimental progress of bio-cathodes in microbial fuel cells with an emphasis on the classification according to the final electron acceptors and the comparison with the traditional abiotic cathode MFCs. Bio-cathodes are feasible in removing nutrient in wastewater treatment and being used as biosensors in bioremediation. Presently, tremendous efforts are being made in investigating appropriate electrodes and dominant strains to achieve the effective practical applications.  相似文献   

12.
微生物燃料电池电极材料研究进展   总被引:1,自引:0,他引:1  
次素琴  吴娜  温珍海  李景虹 《电化学》2012,18(3):243-251
微生物燃料电池以微生物为催化剂将化学能直接转化成电能,可用于废水处理并产生电能,是一种极具应用前景的生物电化学技术. 本文综述了近年来微生物燃料电池电极材料的制备、功能修饰及表面构建等的研究进展,着重介绍了炭基纳米材料的微结构与成分对微生物燃料电池性能的影响,并分析了微生物燃料电池电极材料现存的主要问题,以期不久的将来微生物燃料电池能付之实用.  相似文献   

13.
Zeolites adsorb microbial cells on their surfaces and selective adsorption for specific microorganisms was seen with certain zeolites. Tests for the adsorption ability of zeolites were conducted using various established microbial cell lines. Specific cell lines were shown to selectively absorb to certain zeolites, species to species.

In order to understand the selectivity of adsorption, we tested adsorption under various pH conditions and determined the zeta-potentials of zeolites and cells. The adsorption of some cell lines depended on the pH, and some microorganisms were preferentially adsorbed at acidic pH. The values of zeta-potentials were used for calculating the electric double layer interaction energy between zeolites and microbial cells. There was a correlation between the experimental adsorption results and the interaction energy. Moreover, we evaluated the surface hydrophobicity of bacterial cells by using the microbial adherence to hydrocarbon (MATH) assay. In addition, we also applied this method for zeolites to quantify relative surface hydrophobicity. As a result, we found a correlation between the adsorption results and the hydrophobicity of bacterial cells and zeolites. These results suggested that adsorption could be explained mainly by electric double layer interactions and hydrophobic interactions.

Finally, by using the zeolites Na-BEA and H-Y, we succeeded in clearly separating three representative microbes from a mixture of Escherichia coli, Bacillus subtilis and Staphylococcus aureus. Zeolites could adsorb each of the bacterial cell species with high selectivity even from a mixed suspension. Zeolites can therefore be used as effective carrier materials to provide an easy, rapid and accurate method for cell separation.  相似文献   


14.
Here, we show that quorum sensing (QS) modulates the current generation of the anode-respiring bacterium Pseudomonas aeruginosa because it controls the production of phenazines, which mediate the electron transfer to the anode. The current generation by a wildtype (WT) strain P. aeruginosa PA14 and the GacS/GacA protein-regulatory mutant retS was investigated under different environmental conditions. The retS mutant generated significantly higher current (45-fold) than the WT under anaerobic conditions. Anaerobic current generation by the WT was 28-fold higher with extraneously supplied lactones (a QS-signaling molecule). Compared to anaerobic conditions, the WT with some oxygen (microaerobic conditions) exhibited enhanced phenazine production (39-fold) and current levels (48-fold). Iron-rich medium and microaerobic conditions had a negative impact on current generation by retS. All these results were directly linked to QS activity in P. aeruginosa, thus, demonstrating the importance of this bacterial communication system for current generation in BESs. We also show that BESs represent a new tool for real-time investigation of phenazine-related QS activity.  相似文献   

15.
To meet the ever‐increasing requirements for the next generation of sustainable and versatile energy‐related devices, conjugated polymers, which have potential advantages over small molecules and inorganic materials, are among the most promising types of green candidates. The properties of conjugated polymers can be tuned through modification of the structure and incorporation of different functional moieties. In addition, superior performances can be achieved as a result of the advantages of nanostructures, such as their large surface areas and the shortened pathways for charge transfer. Therefore, nanostructured conjugated polymers with different properties can be obtained to be applied in different energy‐related organic devices. This review focuses on the application and performance of the recently reported nanostructured conjugated polymers for high‐performance devices, including rechargeable lithium batteries, microbial fuel cells (MFCs), thermoelectric generators, and photocatalytic systems. The design strategies, reaction mechanisms, advantages, and limitations of nanostructured conjugated polymers are further discussed in each section. Finally, possible routes to improve the performances of the current systems are also included in the conclusion.  相似文献   

16.
The heterogeneous reactions of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reaction products evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new (BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during the reaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products. In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could play important roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.  相似文献   

17.
《Electroanalysis》2017,29(3):652-661
The modifications of electrodes using graphene and graphene composites in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) have been widely applied for enhancing the electrochemical catalytic activity and performance of MFCs and MECs. Graphene as one of advanced materials has shown outstanding features for promoting practical applications of MFCs. This review summarizes the modification methods and characterization methods of graphene and related graphene composites on electrode surfaces in MFCs and MECs. The performance improvements of MFCs and MECs by various graphene related composites have been reviewed, which will provide an efficient guide for selecting suitable graphene material to modify electrodes in MFCs and MECs for improving their performance.  相似文献   

18.
Microbial conversion of 4-oxoisophorone (OIP) by thermophilic bacteriumThermomonospora curvata was attempted in a continuous process. The correlation between cell growth and microbial conversion was first examined in a batch culture. The results indicated that this microbial conversion was strongly dependent upon cell growth. In a continuous microbial conversion of OIP using a continuous stirred tank reactor, the cell density in the reactor seemed to be the limiting factor in the OIP conversion. Therefore, we developed an air-bubbling hollow fiber reactor to achieve a high density culture. By using this bioreactor, more than 3.3 times higher productivity was achieved. In addition, during the process, only a slight cell contamination to the product was observed. Therefore, this bioreactor is suitable for the continuous microbial conversion, considering further downstream processes and high productivity.  相似文献   

19.
Bioactivity of a microbial pigment, extracted from fermented broth of culture marine Pseudomonas aeruginosa was screened for anticancer activity against human skin melanoma cell line SK-MEL-2. Upon characterisation, the pigment was confirmed as Phenazine-1-carboxylic acid (PCA). The PCA was found effective against SK-MEL-2 cell line at low concentration (GI50 value <10 μg/mL). Reduced cell density and cell shrinkage with typical morphological changes such as rounding of cells with loss/breaking of cell membrane were seen in SK-MEL-2 cells treated with PCA and Adriamycin. The pigment exhibited UV-B protecting activity as calculated by in vitro spectrophotometric assay and potentiated sun protection factor of commercial sunscreen lotion. Moreover, the pigment was non-toxic up to concentration of 100 ppm as assessed erythrocyte haemolysis assay. These results suggest that microbial pigment PCA could be effective and promising in the treatment as well as prevention of melanoma skin cancers.  相似文献   

20.
由战争、手术等而造成的大出血通常会导致更大的伤痛或更高的死亡率,因此,非常需要及时有效的止血以减少创伤导致死亡.而目前的止血材料都存在止血速度慢、止血效果差等问题.为提高材料的止血效率,本文受贻贝启发使用多巴胺和赖氨酸接枝改性的明胶(GDL)和氧化葡聚糖(ODE)为原料,通过冷冻干燥法制备多孔海绵状止血材料(GDL/O...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号