首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flavonoids are the main components of Meconopsis integrifolia (Maxim.) Franch, which is a traditional Tibetan medicine. However, traditional chromatography separation requires a large quantity of raw M. integrifolia and is very time consuming. Herein, we applied high‐speed counter‐current chromatography in the separation and purification of flavonoids from the ethanol extracts of M. integrifolia flower. Ethyl acetate/n‐butanol/water (2:3:5, v/v/v) was selected as the optimum solvent system to purify the four components, namely quercetin‐3‐O‐β‐d‐ glucopyrannosy‐(1→6)‐β‐d‐ glucopyranoside (compound 1 , 60 mg), quercetin 3‐O‐[2’’’‐O‐acetyl‐β‐d‐ glucopyranosyl‐(1→6)‐β‐d‐ glucopyranoside (compound 2 , 40 mg), quercetin 3‐O‐[3’’’‐O‐acetyl‐β‐d‐ glucopyranosyl‐(1→6)‐β‐d‐ glucopyranoside (compound 3 , 11 mg), and quercetin 3‐O‐[6’’’‐O‐acetyl‐β‐d‐ glucopyranosyl‐(1→6)‐β‐d‐ glucopyranoside (compound 4 , 16 mg). Among the four compounds, 3 and 4 were new acetylated flavonol diglucosides. After the high‐speed counter‐current chromatography separation, the purities of the four flavonol diglucosides were 98, 95, 90, and 92%, respectively. The structures of these compounds were identified by mass spectrometry and NMR spectroscopy.  相似文献   

2.
Seven new acyl glycosides, benzyl 5‐O‐vanilloyl‐β‐d ‐apiofuranosyl‐(1→6)‐β‐d ‐glucopyranoside ( 1 ), 4‐hydroxy‐3‐methoxyphenyl 5‐O‐syringoyl‐β‐d ‐apiofuranosyl‐(1→6)‐β‐d ‐glucopyranoside ( 2 ), isopentyl 5‐O‐syringoyl‐β‐d ‐apiofuranosyl‐(1→6)‐β‐d ‐glucopyranoside ( 3 ), 3,4,5‐trimethoxyphenyl 5‐O‐sinapoyl‐β‐d ‐apiofuranosyl‐(1→6)‐β‐d ‐glucopyranoside ( 4 ), 6‐methoxy‐7‐[(6‐O‐sinapoyl‐β‐d ‐glucopyranosyl)oxy]coumarin ( 5 ), 6‐methoxy‐7‐[(2‐O‐sinapoyl‐β‐d ‐glucopyranosyl)oxy]coumarin ( 6 ), and isopentyl β‐d ‐apiofuranosyl‐(1→6)‐[5‐O‐syringoyl‐β‐d ‐apiofuranosyl‐(1→2)]‐β‐d ‐glucopyranoside ( 7 ), were isolated from Chinese folk herb Erycibe obtusifolia. Their structures were elucidated on the basis of extensive spectroscopic analysis, including UV, IR, MS, and 1D‐ and 2D‐NMR techniques. Further, these compounds were evaluated against HCT‐8 (human colon carcinoma), Bel‐7402 (human liver carcinoma), BGC‐823 (human stomach carcinoma), A549 (human lung carcinoma), and A2780 (human ovarian carcinoma) cell lines, however, none of them exhibited a significant bioactivity (IC50 > 10 μm ).  相似文献   

3.
Anthraquinone glycosides, such as chrysophanol 1‐O‐β‐d‐ glucoside, chrysophanol 8‐O‐β‐d‐ glucoside, and physion 8‐O‐β‐d‐ glucoside, are the accepted important active components of Rheum tanguticum Maxim. ex Balf. due to their pharmacological properties: antifungal, antimicrobial, cytotoxic, and antioxidant activities. However, an effective method for the separation of the above‐mentioned anthraquinone glycosides from this herb is not currently available. Especially, greater difficulty existed in the separation of the two isomers chrysophanol 1‐O‐β‐d‐ glucoside and chrysophanol 8‐O‐β‐d‐ glucoside. This study demonstrated an efficient strategy based on preparative high‐performance liquid chromatography and high‐speed countercurrent chromatography for the separation of the above‐mentioned anthraquinone glycosides from Rheum tanguticum Maxim.ex Balf.  相似文献   

4.
A new sodium salt of anthraquinone named sodium emodin‐1‐O‐β‐gentiobioside, together with nine known compounds, viz. rubrofusarin‐6‐O‐β‐D ‐gentiobioside, chrysophanol‐1‐O‐β‐D ‐glucopyranosyl‐(1–3)‐β‐D ‐glucopyranosyl‐(1–6)‐β‐D ‐glucopyranoside, obtusifolin‐2‐O‐β‐D ‐glucopyranoside, aurantio‐obtusin‐6‐O‐β‐D ‐glucopyranoside, physcion‐8‐O‐β‐D ‐glucopyranoside, 1‐hydroxyl‐2‐acetyl‐3,8‐dimethoxy‐6‐O‐β‐D ‐apiofuranosyl‐(1–2)‐β‐D ‐glucosylnaphthalene, toralactone‐9‐O‐β‐D ‐gentiobioside, aurantio‐obtusin, rubrofusarin‐6‐O‐β‐D ‐apiofuranosyl‐(1–6)‐O‐β‐D ‐glucopyranoside, was isolated from the seeds of Cassia obtusifolia and its structure was elucidated by 1H and 13C NMR technique assisted with acid–alkali titration. The change of chemical shifts of sodium emodin‐1‐O‐β‐gentiobioside before and after acid–alkali titration was also characterized. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Three new isoflavone C‐glycosides, along with two known isoflavone O‐glycosides, were isolated from the roots of Pueraria lobata (Willd .) Ohwi . The structures of the new compounds were elucidated as 4′,7‐dihydroxy‐3′‐methoxyisoflavone 8‐C‐[β‐d‐ glucopyranosyl‐(1→6)]‐β‐d‐ glucopyranoside ( 1 ), 4′,7‐dihydroxy‐3′‐methoxyisoflavone 8‐C‐[β‐d‐ apiofuranosyl‐(1→6)]‐β‐d‐ glucopyranoside ( 2 ), and 8‐Cβ‐d‐ glucopyranosyl‐4′,7‐dihydroxy‐3′‐methoxyisoflavone 4′‐Oβ‐d‐ glucopyranoside ( 3 ) on the basis of spectroscopic methods, especially 2D‐NMR and MS analyses. The known compounds isolated were identified by comparison of their physical and spectroscopic data with those reported in the literature.  相似文献   

6.
A rapid, sensitive, and reliable analytical ultra performance liquid chromatography with tandem mass spectrometry method was developed for the simultaneous determination of Aralia‐saponin IV, 3‐O‐β‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐glucopyranosyl oleanolic acid 28‐O‐β‐d ‐glucopyranoside, Aralia‐saponin A and Aralia‐saponin B after the oral administration of total saponin of Aralia elata leaves in rat plasma. Plasma samples were pretreated by protein precipitation with methanol. The analysis was performed on an ACQUITY UPLC HSS T3 column. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using an electrospray ionization source with negative ionization mode. Under the experimental conditions, the calibration curves of four analytes had good linearity values (r > 0.991). The intra‐ and inter‐day precision values of the four analytes were ≤ 11.6%, and the accuracy was between –6.2 and 4.2%.The extraction recoveries of four triterpenoid saponins were in the range of 84.06–91.66% (RSD < 10.5%), and all values of the matrix effect were more than 90.30%. The developed analytical method was successfully applied to pharmacokinetic study on simultaneous determination of the four triterpenoid saponins in rat plasma after oral administration of total saponin of Aralia elata leaves, which helps guiding clinical usage of Aralia elata leaves.  相似文献   

7.
A new demethylacetovanillochromene glycoside, 2,2‐dimethyl‐2H‐(8‐hydroxy‐6‐acetyl)‐[2,3‐b] pyran‐8‐O‐β‐D‐apiofuranosyl‐(1 →6)‐β‐D‐glucopyranoside ( 1 ), together with twenty‐three known compounds, have been isolated from the root bark of Rodgersia sambucifolia. These known compounds include two diterpenoids, three flavonoids, two catechins, four lignans, two benzenoids, two isocoumarins, two steroids and six monoterpene glycosides, which were determined by means of spectral analyses.  相似文献   

8.
Three new, 1 – 3 , and seven known phenolic and terpenic glycosides were isolated from the BuOH‐soluble fraction of 95% EtOH extract of the roots and rhizomes of Celastrus orbiculatus. The structures of the new compounds were elucidated as carvacrol 2‐Oα‐L ‐rhamnopyranosyl‐(1→6)‐β‐D ‐glucopyranoside ( 1 ), 5‐methoxycarvacrol 2‐Oα‐L ‐rhamnopyranosyl‐(1→6)‐β‐D ‐glucopyranoside ( 2 ), and 15‐hydroxytorreyol 10‐Oβ‐D ‐apiofuranosyl‐(1→6)‐β‐D ‐glucopyranoside ( 3 ) on the basis of spectroscopic analysis and chemical methods.  相似文献   

9.
Rhododendron dauricum L. has been used as a traditional Chinese medicine to treat cough and asthma and relieve phlegm and bronchitis. In this study, a reliable method based on high‐performance liquid chromatography with diode array detection and quadrupole time‐of‐flight tandem mass spectrometry was established to systematically identify and quantify the components in this herb for the first time. A total of 33 compounds were identified, including 24 flavonoids, six phenolic acids, two coumarins and one terpene. Among them, poriolin ( 17 ), farrerol‐7‐O‐β‐d‐ glucopyranoside ( 20 ), and syzalterin ( 30 ) were isolated from this plant for the first time, and quercetin‐3‐β‐d‐ (6‐p‐hydroxy benzoyl) galactoside ( 19 ), quercetin‐3‐β‐d‐ (6‐p‐coumaroyl) galactoside ( 21 ), and myrciacetin ( 23 ) were identified from this genus for the first time. Fragmentation pathways of flavonoids also have been investigated by electrospray ionization mass spectrometry. Moreover, seven bioactive constituents, namely, gallic acid ( 1 ) , scopoletin (6 ), dihydroquercetin ( 7 ), quercetin ( 22 ), kaempferol ( 25 ), 8‐desmethyl farrerol ( 27 ), and farrerol ( 28 ), were simultaneously quantified. The developed method has been validated and applied to analyze ten samples of R. dauricum from Hebei Province successfully. The contents of the seven compounds have been detected and compared.  相似文献   

10.
Seven phenolic compounds, including one new compound trans‐3,4,3′,5′‐tetrahydroxy‐4′‐methylstilbene 4‐O‐β‐D‐xylopyranosyl‐(1→6)‐β‐D‐glucopyranoside ( 1 ), together with six known compounds (+)‐hinokiol ( 2 ), 6‐hydroxy‐5,7‐dimethoxycoumarin ( 3 ), caffeic acid ( 4 ), vanillic acid ( 5 ), 4‐hydroxy‐2,6‐dimethoxyphenol‐1‐O‐β‐D‐glucopyranoside ( 6 ) and 4‐allyl‐2,6‐dimethoxyphenol‐1‐O‐β‐D‐glucopyranoside ( 7 ), were isolated from the root bark of Elsholtzia bodinieri Van't. Their structures were determined on the basis of spectroscopic and chemical evidence.  相似文献   

11.
The isolation and identification of twenty‐two components (including one new compound) from the whole herb of Clinoponium laxiflorum (Hay) Matsum (Labiatae) are described. Their structures were determined on the basis of spectral and chemical transformation. One new compound is methyl rosmarinate. The other twenty‐one compounds include three steroids (α‐spinasterol, α‐spinasteryl‐3‐O‐β‐D‐glucopyranoside, and β‐sitosteryl‐3‐O‐β‐glucopyranoside), three triterpenes (oleanolic acid, ursolic acid, and betulinic acid), nine flavonoids (didymin, apigenin‐7‐O‐β‐glucopyranoside, luteolin‐7‐O‐β‐glucopyranoside, isosakuranetin, narigenin, apigenin, luteolin, narirutin, and hesperidin), three lignolic acids (rosmarinic acid, 3‐(3,4‐dihydroxyphenyl)lactic acid, and caffeic acid), and three phenols (4‐hydroxybenzaldehyde, 3,4‐dihydroxybenzaldehyde, and 3,4‐dihydroxybenzoic acid).  相似文献   

12.
Aqueous two‐phase flotation followed by preparative high‐performance liquid chromatography was used to separate four flavonol glycosides from Solanum rostratum Dunal. In the aqueous two‐phase flotation section, the effects of sublation solvent, solution pH, (NH4)2SO4 concentration in aqueous solution, cosolvent, N2 flow rate, flotation time, and volumes of the polyethylene glycol phase on the recovery were investigated in detail, and the optimal conditions were selected: 50 wt% polyethylene glycol 1000 ethanol solvent as the flotation solvent, pH 4, 350 g/L of (NH4)2SO4 concentration in aqueous phase, 40 mL/min of N2 flow rate, 30 min of flotation time, 10.0 mL of flotation solvent volume, and two times. After aqueous two‐phase flotation concentration, the flotation products were purified by preparative high‐performance liquid chromatography. The purities of the final products A and B were 98.1 and 99.0%. Product B was the mixture of three compounds based on the analysis of high‐performance liquid chromatography at the temperature of 10°C, while product A was hyperoside after the identification by nuclear magnetic resonance. Astragalin, 3’‐O‐methylquercetin 3‐O‐β‐d ‐galactopyranoside, and 3’‐O‐methylquercetin 3‐O‐β‐d ‐glucopyranoside were obtained with the purity of 93.8, 97.1, and 99.2%, respectively, after the further separation of product B using preparative high‐performance liquid chromatography.  相似文献   

13.
Two new flavone glycosides, 3′‐hydroxy‐5,7‐dimethoxyflavone 4′‐O‐β‐D‐apiofuranoside ( 1 ), and 5,7‐dimethoxyflavone 4′‐O‐[β‐D‐apiofuranosyl(1→5)‐ β‐D‐glucopyranoside] ( 2 ) along with four known compounds, 4′‐hydroxy‐5,7‐dimethoxyflavone ( 3 ), 2,6‐dimethoxy‐1,4‐benzoquinone ( 4 ), lupeol ( 5 ) and betulin ( 6 ) were isolated from the stem and roots of Strobilanthes formosanus. Their structures were elucidated on the basis of their spectroscopic evidence.  相似文献   

14.
Sixteen compounds were isolated from the aerial parts of Solanum incanum L. These compounds included ten flavonoids ( 1‐10 ), chlorogenic acid ( 11 ), adenosine ( 12 ), benzyl‐O‐β‐D‐xylopyranosyl(1→2)‐β‐D‐glucopyranoside ( 13 ), and three phenylalkanoic acids ( 14‐16 ). The structures were determined from their physical and spectral data. Among these compounds, kaempferol 3‐O‐(6″′‐O‐2,5‐dihydroxycinnamoyl)‐β‐D‐glucopyranosyl (1→2) β‐D‐glucopyranoside ( 10 ) was identified as a new compound.  相似文献   

15.
In this study, an on‐line two‐dimensional high‐speed counter‐current chromatography system based on a six‐port valve was developed. Target‐guided by ultrafiltration with high‐performance liquid chromatography, the one‐step isolation of three potential α‐amylase inhibitors from Abelmoschus esculentus (L).Moench was achieved by employing the developed orthogonal system and extrusion elution mode. The purities of three potential α‐amylase inhibitors were all over 95% as determined by high‐performance liquid chromatography. Furthermore, UV, mass spectrometry and 1H NMR spectroscopy were applied to the structural identification of the isolated three target compounds, their structures were assigned as quercetin‐3‐O‐sophoroside (i), 5,7,3′,4′‐tetrahydroxy flavonol‐3‐O‐[β‐d ‐rhamnopyranosil‐(1→2)]‐β‐d ‐glucopyranoside (ii ) and isoquercitrin (iii), respectively. The Results demonstrated that the proposed method was highly efficient to screen and isolate enzyme inhibitors from complex natural products extracts, and on‐line two‐dimensional high‐speed counter‐current chromatography can effectively increase the peak resolution of target compounds.  相似文献   

16.
A selective and sensitive ultra‐high performance liquid chromatography with tandem mass spectrometry method was developed and validated for the determination and pharmacokinetic study of (+)‐8‐hydroxypinoresinol‐4’‐O‐β ‐D‐glucopyranoside, prinsepiol‐4‐O‐β‐D‐glucopyranoside, (+)‐pinoresinol‐4,4’‐di‐O‐β‐D‐glucopyranoside, and (−)‐massoniresinol 3α‐O‐β‐D‐glucopyranoside in rat plasma after the oral administration of a Valeriana amurensis extract. The analytes and ethyl 4‐hydroxybenzoate (internal standard) were separated on a Waters ACQUITY UPLC HSS T3 chromatographic column. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using an electrospray ionization source operating in negative ionization mode. The linear ranges (ng/mL) of the standard curves were 0.39–154.00, 0.62–244.70, 0.50–198.60, and 0.34–134.50 for (+)‐8‐hydroxypinoresinol‐4’‐O‐β‐D‐glucopyranoside, prinsepiol‐4‐O‐β‐D‐glucopyranoside, (+)‐pinoresinol‐4,4’‐di‐O‐β‐D‐glucopyranoside, and (−)‐massoniresinol 3α‐O‐β‐D‐glucopyranoside, respectively. The inter‐ and intra‐day precisions were less than 11.0%, the accuracies were between −5.9 and 7.7%, and the extraction recoveries of the four analytes were > 81.2% from rat plasma. The method was successfully applied to a pharmacokinetic study of the four analytes after oral administration of a Valeriana amurensis extract to rats. The developed method has the potential for pharmacokinetic analysis and to provide additional information in the clinical application of Valeriana amurensis.  相似文献   

17.
As an aid for structure elucidation of new steviol glycosides, reversed‐phase C18 high‐performance liquid chromatography method was developed with several previously characterized diterpene glycosides, to identify known and detect novel aglycone‐C13 oligosaccharide moieties and indirectly identify C‐19 interlinkages. Elution order of several diterpene glycosides and their aglycone‐C13 oligosaccharide substituted with different sugar arrangements were also summarized. Comparison of the retention time of a product obtained after alkaline hydrolysis with the aglycone‐C‐13 portions of known compounds reported herein allowed us to deduce the exact positions of the sugars in the C‐13 oligosaccharide portion. The elution position of several steviol glycosides with an ent‐kaurene skeleton was helpful to describe an identification key. Two previously uncharacterized diterpene glycosides together with two known compounds were isolated from a commercial Stevia rebaudiana leaf extract. One was found to be 13‐[(2‐O‐β‐d ‐xylopyranosyl3‐O‐β‐d ‐glucopyranosyl‐β‐d ‐glucopyranosyl)oxy]ent‐kaur‐16‐en‐19‐oic acid‐(2‐O‐β‐d ‐glucopyranosyl‐β‐d ‐glucopyranosyl) ester (rebaudioside V), whereas the other was determined to be 13‐[(2‐O‐β‐d ‐xylopyranosyl3‐O‐β‐d ‐glucopyranosyl‐β‐d‐ glucopyranosyl)oxy]ent‐kaur‐16‐en‐19‐oic acid‐(2‐O‐α‐l ‐rhamnopyranosyl‐3‐O‐β‐d ‐glucopyranosyl‐β‐d ‐glucopyranosyl) ester (rebaudioside W). Previously reported compounds were isolated in gram quantities and identified as rebaudioside J and rebaudioside H. In addition, a C‐19 sugar‐free derivative was also prepared from rebaudioside H to afford rebaudioside H1. Chemical structures were partially determined by the high‐performance liquid chromatography method and unambiguously characterized by using one‐dimensional and two‐dimensional nuclear magnetic resonance experiments.  相似文献   

18.
Two new phenylethanoid glycosides, longissimosides A and B ( 1 and 2 , resp.), together with eight structurally related known compounds, were isolated from the EtOH extract of leaves and stems of Callicarpa longissima (Hemsl .) Merr . The structures of 1 and 2 were elucidated as 2‐(3,4‐dihydroxyphenyl)ethyl O‐(α‐L ‐rhamnopyranosyl)‐(1→3)‐O‐(2‐O‐syringoyl‐β‐D ‐xylopyranosyl)‐(1→6)‐ 4‐O‐[(E)‐caffeoyl]‐β‐D ‐glucopyranoside ( 1 ) and 2‐(3‐hydroxy‐4‐methoxyphenyl)ethyl O‐(α‐L ‐rhamnopyranosyl)‐(1→3)‐O‐(β‐D ‐apiofuranosyl)‐(1→6)‐4‐O‐[(E)isoferuloyl]‐β‐D ‐glucopyranoside ( 2 ) on the basis of spectroscopic data and acid hydrolysis.  相似文献   

19.
Four new ursane‐type saponins, monepalosides C–F, together with a known saponin, mazusaponin II, were isolated from Morina nepalensis var. alba Hand.‐Mazz. Their structures were determined to be 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[alpha;‐L ‐rhamnopyranosyl‐(1 → 2)]‐α‐L ‐arabinopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside C, 1 ), 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[alpha;‐L ‐rhamnopyranosyl‐(1 → 2)]‐β‐D ‐xylopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside D, 2 ), 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[beta;‐D ‐glucopyranosy‐(1 → 2)]‐α‐L ‐arabinopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside E, 3 ) and 3‐O‐β‐D ‐xylopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranoside (monepaloside F, 4 ) on the basis of chemical and spectroscopic evidence. 2D NMR techniques, including 1H–1H COSY, HMQC, 2D HMQC‐TOCSY, HMBC and ROESY, and selective excitation experiments, including SELTOCSY and SELNOESY, were utilized in the structure elucidation and complete assignments of 1H and 13C NMR spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
This study aimed to investigate the structural features of the isolated flavonol glycoside, which might behave as a cytotoxic compound. The hexane, chloroform, ethyl acetate, and aqueous fractions of an 80% methanol solution of Neem (Azadirachta indica) (Family: Meliaceae) leaves were subjected to a cytotoxicity bioassay against brine shrimp, Artemia salina. The ethyl acetate fraction exhibited the highest cytotoxic effect, supported by the lowest lethal concentration, a LC50 value of 1.35±0.40 ppm. A compound, Quercetin 3‐O‐β‐D‐glucopyranoside, was isolated from the most toxic fraction of the ethyl acetate via preparative liquid chromatography and then identified via ultraviolet‐visible (UV‐Vis), infrared (IR), mass spectrum (MS) and nuclear magnetic resonance (NMR) analyses. The compound was further confirmed by physical state, color, solubility, and melting point determination. The cytotoxic results suggest that the leaf ethyl acetate fraction consists of toxic compounds, which point towards the isolation of Quercetin 3‐O‐β‐D‐glucopyranoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号