首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The major challenge to the use of laser ablation sample introduction, combined with inductively coupled plasma mass spectrometry, is the problem of calibration. In the geological analysis of minerals, calibration is complicated by the extraordinarily wide variety of sample matrices which may be encountered. While there is a lack of mineral standards with well characterized concentrations near 1 g/g, the NIST glass reference materials (SRM 610–617) have been demonstrated to be very useful for the analysis of a wide variety of lithophile elements in silicate samples. An internal reference element, for which the concentration is known in the sample, has been widely used to make corrections for the multiplicative effects of volume (or weight) of the sample ablated, instrument drift, and matrix effects. This procedure works extremely well where elements being determined and the internal reference element being used share similar ablation behaviours; i.e., they do not fractionate progressively during the ablation and transport process. In this study, it is demonstrated that, in terms of ablation behaviour, elements fall into several distinct clusters and that the elements within these clusters correlate well with each other during a period of ablation. Thus, elements within a cluster can be determined using an internal reference element from within the same cluster. While a combination of periodic varying properties typifies the clusters, the geochemical classification of elements into lithophile (silicate loving), and chalcophile (sulphide loving) appears to offer the best characterization of the major groups.  相似文献   

2.
探讨了内标法和基体归一法校准的基本原理。基体归一校准法的基本步骤为:先用简单外标法测得样品中尽可能全的主、次、痕量元素含量,氧化物加和后进行100%归一,得到灵敏度校正系数,对所有元素的测定结果进行修正。修正结果的可靠性在很大程度上取决于测定元素是否"完全"。由于锆石的基体元素组成简单且易于测定,很适合用基体归一法校准。在激光剥蚀-电感耦合等离子体质谱法(LA-ICP-MS)微区原位分析中,应用基体归一校准法的最大优点是:可以避免预先用其它微区分析技术对未知样品中的内标元素进行定量。该技术可适用于具有环带结构、难以找到均匀分布的内标元素的地质样品的元素空间分布测定。在高分辨ICP-MS(Element2)和NewWave-UV-213激光系统上,应用基体归一定量技术同时分析了锆石中主、次、痕量共54种元素。对未知锆石样品的分析,基体归一法与内标法结果的一致性令人满意。分析德国蛇纹岩标准玻璃ATHO-G中相对误差<25%的有52个元素,<10%的有36个元素;大多数元素的相对标准偏差<10%。  相似文献   

3.
An approach for the determination of trace element concentrations in high purity metals, using an inductively coupled plasma mass spectrometer (ICP-MS) with a laser-ablation system for direct solid sample introduction after calibration with nebulized liquid standards was made. Due to the inherent differences in the rate of sample introduction with laser-ablation and pneumatic nebulization, a matrix element must be used as an internal standard. This is problematical for elements that have no isotope with a relative abundance of less than 0.1 %, since the ion signals would be too high for direct measurement, and reduction of the ablation rate would compromise the sensitivity for trace elements. Due to the high stability of ICP-unit and mass filter of the instrument used, it was found that the tail of a mass-peak of the matrix element could be used as an internal standard. Therefore, a position at –0.5 amu from the matrix-isotope (e.g. 62.5Cu in copper samples) was used for internal standardization. The standard deviation of this signal in a period of 2.5 h was 3.6% RSD with no notable drift when the laser ablation was used for sample introduction. The calibration of the matrix-element by nebulizing liquid standards showed that the ion signal measured on the peak-tail is directly proportional to the element concentration in the ICP. This indicates that the peak shape is not only stable, but also independent of the peak height. The advantages of this method lie in the easy preparation of calibration standards for quantitative measurements with a laser-ablation system and access to homogeneous standards for materials, that are difficult to homogenize in the solid state. The calibration of the traces is performed relatively to a fixed concentration of the matrix element. Calibrations were carried out for trace concentrations in high purity copper and good recoveries were obtained for high-purity reference standards. Received: 23 February 1998 / Revised: 20 July 1998 / Accepted: 25 July 1998  相似文献   

4.
An approach for the determination of trace element concentrations in high purity metals, using an inductively coupled plasma mass spectrometer (ICP-MS) with a laser-ablation system for direct solid sample introduction after calibration with nebulized liquid standards was made. Due to the inherent differences in the rate of sample introduction with laser-ablation and pneumatic nebulization, a matrix element must be used as an internal standard. This is problematical for elements that have no isotope with a relative abundance of less than 0.1 %, since the ion signals would be too high for direct measurement, and reduction of the ablation rate would compromise the sensitivity for trace elements. Due to the high stability of ICP-unit and mass filter of the instrument used, it was found that the tail of a mass-peak of the matrix element could be used as an internal standard. Therefore, a position at –0.5 amu from the matrix-isotope (e.g. 62.5Cu in copper samples) was used for internal standardization. The standard deviation of this signal in a period of 2.5 h was 3.6% RSD with no notable drift when the laser ablation was used for sample introduction. The calibration of the matrix-element by nebulizing liquid standards showed that the ion signal measured on the peak-tail is directly proportional to the element concentration in the ICP. This indicates that the peak shape is not only stable, but also independent of the peak height. The advantages of this method lie in the easy preparation of calibration standards for quantitative measurements with a laser-ablation system and access to homogeneous standards for materials, that are difficult to homogenize in the solid state. The calibration of the traces is performed relatively to a fixed concentration of the matrix element. Calibrations were carried out for trace concentrations in high purity copper and good recoveries were obtained for high-purity reference standards. Received: 23 February 1998 / Revised: 20 July 1998 / Accepted: 25 July 1998  相似文献   

5.
以硬石膏矿物标样中Ca相对于S的灵敏度因子为基准,将玻璃标样中主量和痕量元素相对于Ca的灵敏度因子转换成元素相对于S的灵敏度因子,建立了多玻璃标样结合硫内标归一定量技术分析硫化物单矿物多元素的新方法。利用本方法分析了美国合成多金属硫化物矿物标样MASS-1中20种元素,主量元素分析结果的相对误差小于10%,痕量元素分析结果几乎都落在给定值±不确定度范围内。利用本方法对12个硫化物单矿物分析结果表明,绝大多数主量元素含量测定值的相对误差小于10%,且多数主量元素甚至优于以MASS-1为外标、内标归一定量法及内标校准法分析结果,而痕量元素与MASS-1校准结果较为一致。本方法克服了基体不匹配的问题,能比较准确地定量分析硫化物矿物中的主成分S,可用于定量校准硫化物矿物。  相似文献   

6.
Laser ablation inductively coupled plasma mass spectrometry using a quadrupole-based mass spectrometer (LA-ICP-QMS) was applied for the analysis of powdered zeolites (microporous aluminosilicates) used for clean-up procedures. For the quantitative determination of trace element concentrations three geological reference materials, granite NIM-G, lujavrite NIM-L and syenite NIM-S, from the National Institute for Metallurgy (South Africa) with a matrix composition corresponding to the zeolites were employed. Both the zeolites and reference materials were fused with a lithium borate mixture to increase the homogeneity and to eliminate mineralogical effects. In order to compare two different approaches for the quantification of analytical results in LA-ICP-MS relative sensitivity coefficients (RSCs) of chemical elements and calibration curves were measured using the geostandards. The experimentally obtained RSCs are in the range of 0.2-6 for all elements of interest. Calibration curves for trace elements were measured without and with Li or Ti as internal standard element. With a few exceptions the regression coefficients of the calibration curves are better than 0.993 with internal standardization. NIM-G granite reference material was employed to evaluate the accuracy of the technique. Therefore, the measured concentrations were corrected with RSCs which were determined using lujavrite reference material NIM-L. This quantification method provided analytical results with deviations of 1-11% from the recommended and proposed values in granite reference material NIM-G, except for Co, Cs, La and Tb. The relative standard deviation (RSD) of the determination of the trace element concentration (n = 5) is about 1% to 6% using Ti as internal standard element. Detection limits of LA-ICP-QMS in the lower microg/g range (from 0.03 microg/g for Lu, Ta and Th to 7.3 microg/g for Cu, with the exception of La) have been achieved for all elements of interest. Under the laser ablation conditions employed (lambda: 266 nm, repetition frequency: 10 Hz, pulse energy: 10 mJ, laser power density: 6 x 10(9) W/cm2) fractionation effects of the determined elements relative to the internal standard element Ti were not observed.  相似文献   

7.
The possibility of internal standardisation in laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES) of geological materials by added Sc2O3 and Y2O3 has been examined to cover the wide range of concentrations of major and minor constituents both in silicate rocks and limestones. A Nd?:?YAG laser (355 nm, 10 Hz, 10 mJ per shot) was used for the ablation of discs obtained by fusion of the mixture of samples and oxides of Sc and Y with lithium tetraborate. The flux/sample ratio was in the range from 6 to 10. The contents of analytes were within the concentration range from hundredths to tens of percentage. The trace elements copper and nickel were studied, too. An ICP emission spectrometer OPTIMA 3000 DV was used for the measurement of Si, Al, Ca, Mg, Sr, Ba, Fe, Ti, Mn, Ni, Cu, Na and K analyte lines and Y and Sc reference lines in the axial observation mode. The long-term and the short-term repeatability of measurement were improved by employing scandium or yttrium internal references lines for the above analytes from 6% to 1.5% of RSD and from 2.4% to 1.0% of RSD, respectively. The correlation of signals with concentrations was improved in terms of the correlation coefficient r from 0.90–0.97 to 0.98–0.998 and the relative uncertainity on the centroid of concentrations was improved 2–3 times. A single calibration graph covering the concentration range both in silicates and carbonates is possible for each of elements, as the matrix effects are compensated for by internal standards and the excess of Li2B4O7.  相似文献   

8.
硅酸盐岩元素的准确测定是其地球化学分析研究的基础,其主量元素含量通常可以采用电感耦合等离子体发射光谱(ICP-AES)法测定,但其测定方法的系统性研究相对缺乏,尤其是样品前处理和基体干扰的有效消除两方面。前处理过程中,考察不同熔剂用量对硅酸盐岩样品的分解能力,发现当熔剂与样品比例达到6:1后,熔珠为纯色透明,经稀硝酸提取后溶液澄清,确定了硅酸盐岩前处理时熔剂与样品的最佳配比。测定过程中,通过考察基体匹配法和标准物质法两种基体干扰消除方法对测定结果的影响,发现当采用与岩性一致或者接近的标准物质绘制校准工作曲线时,基体干扰消除效果更好,更适用于测定硅酸盐岩10种主量元素含量。据此,建立了硅酸盐岩经偏硼酸锂熔融,稀硝酸振荡提取处理,以标准物质法绘制校准工作曲线,采用ICP-AES法同时测定SiO2、Fe2O3、Al2O3、CaO、K2O、MgO、Na2O、TiO2、P2O5、MnO 10种成分含量的方法。对岩石标准物质GBW07107进行分析测定,方法的相对标准偏差(RSD)为0.17%~0.75%,方法检出限为0.001%~0.016%,满足硅酸盐岩样品元素定量分析的要求,而且操作简单快速,环境污染小,适用于大批量样品分析。  相似文献   

9.
The possibility of internal standardisation in laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES) of geological materials by added Sc2O3 and Y2O3 has been examined to cover the wide range of concentrations of major and minor constituents both in silicate rocks and limestones. A Nd : YAG laser (355 nm, 10 Hz, 10 mJ per shot) was used for the ablation of discs obtained by fusion of the mixture of samples and oxides of Sc and Y with lithium tetraborate. The flux/sample ratio was in the range from 6 to 10. The contents of analytes were within the concentration range from hundredths to tens of percentage. The trace elements copper and nickel were studied, too. An ICP emission spectrometer OPTIMA 3000 DV was used for the measurement of Si, Al, Ca, Mg, Sr, Ba, Fe, Ti, Mn, Ni, Cu, Na and K analyte lines and Y and Sc reference lines in the axial observation mode. The long-term and the short-term repeatability of measurement were improved by employing scandium or yttrium internal references lines for the above analytes from 6% to 1.5% of RSD and from 2.4% to 1.0% of RSD, respectively. The correlation of signals with concentrations was improved in terms of the correlation coefficient r from 0.90–0.97 to 0.98–0.998 and the relative uncertainity on the centroid of concentrations was improved 2–3 times. A single calibration graph covering the concentration range both in silicates and carbonates is possible for each of elements, as the matrix effects are compensated for by internal standards and the excess of Li2B4O7. Received: 20 June 1998 / Revised: 20 July 1998 / Accepted: 21 September 1998  相似文献   

10.
Abstract

The literature concerning cluster complexes which contain both main group element and transition metal vertices is reviewed. Synthetic methods and general reactivity patterns are summarized. Emphasis is placed on structural. Comparisons of cluster geometries for a wide variety of element combinations. Relationships between these mixed clusters and the main group element clusters known as Zintl ions are discussed.  相似文献   

11.
The use of band-ratioing techniques in internal reflection spectroscopy (IRS) for a wide variety of polymer surface composition and orientation measurements is discussed. It is shown that quantitative data can be obtained under a wide range of experimental conditions. The effects of variations in sample contact, internal reflection element, and angle of incidence are considered in detail. The applicability and limitations of calibration procedures for the determination of surface composition under various experimental conditions are considered. The requirements for obtaining quantitative results by IRS are shown to be far more lenient than is typically assumed.  相似文献   

12.
Laser ablation inductively coupled plasma mass spectrometry using a quadrupole-based mass spectrometer (LA-ICP-QMS) was applied for the analysis of powdered zeolites (microporous aluminosilicates) used for clean-up procedures. For the quantitative determination of trace element concentrations three geological reference materials, granite NIM-G, lujavrite NIM-L and syenite NIM-S, from the National Institute for Metallurgy (South Africa) with a matrix composition corresponding to the zeolites were employed. Both the zeolites and reference materials were fused with a lithium borate mixture to increase the homogeneity and to eliminate mineralogical effects. In order to compare two different approaches for the quantification of analytical results in LA-ICP-MS relative sensitivity coefficients (RSCs) of chemical elements and calibration curves were measured using the geostandards. The experimentally obtained RSCs are in the range of 0.2-6 for all elements of interest. Calibration curves for trace elements were measured without and with Li or Ti as internal standard element. With a few exceptions the regression coefficients of the calibration curves are better than 0.993 with internal standardization. NIM-G granite reference material was employed to evaluate the accuracy of the technique. Therefore, the measured concentrations were corrected with RSCs which were determined using lujavrite reference material NIM-L. This quantification method provided analytical results with deviations of 1–11% from the recommended and proposed values in granite reference material NIM-G, except for Co, Cs, La and Tb. The relative standard deviation (RSD) of the determination of the trace element concentration (n = 5) is about 1% to 6% using Ti as internal standard element. Detection limits of LA-ICP-QMS in the lower μg/g range (from 0.03 μg/g for Lu, Ta and Th to 7.3 μg/g for Cu, with the exception of La) have been achieved for all elements of interest. Under the laser ablation conditions employed (λ: 266 nm, repetition frequency: 10 Hz, pulse energy: 10 mJ, laser power density: 6 × 109 W/cm2) fractionation effects of the determined elements relative to the internal standard element Ti were not observed. Received: 7 April 2000 / Revised: 25 May 2000 / Accepted: 31 May 2000  相似文献   

13.
The classical naked cluster ions of the post-transition elements that are stable in solid compounds and their lower charged analogues observed in mixed metal beams reflect the reduced number of good bonding orbitals. New cluster ions of indium that are hypoelectronic (fewer than 2n+2 skeletal bonding electrons) because of distortions or the bonding of heterometal atoms within the clusters are described. A large family of new, orbital-rich clusters of the group III and IV transition metals sheathed by halide are all centered by a wide variety of heteroatoms. Factors in their stability, possible analogous naked cluster targets, and some calculations are considered.  相似文献   

14.
The concentrations of 29 trace elements have precisely been determined in 15 international silicate reference materials of the Geological Survey of Japan by spark source mass spectrometry (SSMS) and inductively coupled plasma-mass spectrometry (ICP-MS). The samples span a wide range of concentration levels. Most of the SSMS and ICP-MS values agree within analytical error down to the ppb concentration range. Of particular interest are the data for Nb, Y, Zr, Th, U in samples with low trace element concentrations (<1–10 ppm), for which published data are quite variable. The results obtained generally agree with those of modern sensitive analytical techniques (such as ICP-MS, HPLC), but are often much lower than standard XRF and compiled reference values. It is suggested that these discrepancies arise from calibration and analytical problems for standard XRF and ICP-MS and incorporation of these data into compiled values. More judicious selection of data based on analytical methodology and geochemical behaviour is required for samples which challenge the detection limits of standard analysis.  相似文献   

15.
铅、硫团簇的形成、反应与光解   总被引:1,自引:1,他引:0  
用激光直接溅射和串级溅射两种方法产生铅/硫二元团簇,并用串级飞行时间质谱仪研究了二元团簇的组份及光解规律,用激光直接溅射铜+硫混合样品时,组成为PbnSn-1 和PbnSn-的团簇丰度最大,是二元团簇的结构骨架和稳定组份,而用激光串级溅射铅样品和硫样品,通过铅团簇与硫团簇的反应,则可得到PbnSm (n=1-3,m=0-9)和PbnSm-(n=1-7,m=0-9)。这两种二元团簇的产生方法对应两种不同的团簇形成机理。  相似文献   

16.
A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for ‘quasi’ non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97–99% of Al2O3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm−2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20–120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g−1 range and were better for heavier elements (mass >85), being in the 0.1 μg g−1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and principal multi-component analysis.  相似文献   

17.
The fractionation of trace elements due to ablation and transport processes was quantified during Q-switched infrared laser sampling of glass and copper reference materials. Filter-trapping of the ablated product at different points in the sample introduction system showed ablation and transport sometimes caused opposing fractionation effects, leading to a confounded measure of overall (ablative + transport) fractionation. An unexpected result was the greater ablative fractionation of some elements (Au, Ag, Bi, Te in glass and Au, Be, Bi, Ni, Te in copper) at a higher laser fluence of 1.35 × 104W cm−2 than at 0.62 × 104W cm−2, which contradicted predictions from modelling studies of ablation processes. With glass, there was an inverse logarithmic relationship between the extent of ablative and overall fractionation and element oxide melting point (OMPs), with elements with OMPs < 1000°C exhibiting overall concentration increases of 20–1340%. Fractionation during transport was quantitatively important for most certified elements in copper, and for the most volatile elements (Au, Ag, Bi, Te) in glass. Elements common to both matrices showed 50–100% higher ablative fractionation in copper, possibly because of greater heat conductance away from the ablation site causing increased element volatilisation or zone refinement. These differences between matrices indicate that non-matrix-matched standardisation is likely to provide inaccurate calibration of laser ablation inductively coupled plasma-mass spectrometry analyses of at least some elements.  相似文献   

18.
The distribution of neutral copper oxide clusters in the gas phase created by laser ablation is detected and characterized through time-of-flight mass spectroscopy (TOFMS). The neutral copper oxide clusters are ionized by two different approaches: Multiphoton absorption of 355 and 193 nm radiation; and single photon absorption of 118 nm radiation. Based on the observed cluster patterns as a function of experimental conditions (e.g., copper oxide or metal sample, ablation laser power, expansion gas, etc.) and on the width of the TOFMS features, one can uncover the true neutral cluster distribution of CumOn species following laser ablation of the sample. Ablation of a metal sample generates only small neutral CumOn clusters for m less, similar 4 and n approximately 1, 2. Ablation of copper oxide samples generates neutral clusters of the form CumOm (m < or = 4) and CumO(m-1) (m > 4). These clusters are directly detected without fragmentation using single photon, photoionization with 118 nm laser radiation. Using 355 and 193 nm multiphoton ionization, the observed cluster ions are mostly of the form Cu2mOm+ for 4 < or = m < or = 10 (193 nm ionization) and CumO1,2 (355 nm ionization) for copper oxide samples. Neutral cluster fragmentation due to multiphoton processes seems mainly to be of the form CumO(m,m-1) --> CumO(m/2,m/2+1). Neutral cluster growth mechanisms are discussed based on the cluster yield from different samples (e.g., Cu metal, CuO powder, and Cu2O powder).  相似文献   

19.
The performance has been compared of two different quantification methods — namely, the commonly used empirical quantification procedure and a fundamental parameter approach — for determination of the mass fractions of elements in particulate-like sample residues on a quartz reflector measured in the total reflection geometry. In the empirical quantification procedure, the spectrometer system needs to be calibrated with the use of samples containing known concentrations of the elements. On the basis of intensities of the X-ray peaks and the known concentration or mass fraction of an internal standard element, by using relative sensitivities of the spectrometer system the concentrations or mass fractions of the elements are calculated. The fundamental parameter approach does not require any calibration of the spectrometer system to be carried out. However, in order to account for an unknown mass per unit area of a sample and sample nonuniformity, an internal standard element is added. The concentrations/mass fractions of the elements to be determined are calculated during fitting a modelled X-ray spectrum to the measured one. The two quantification methods were applied to determine the mass fractions of elements in the cross-sections of a peat core, biological standard reference materials and to determine the concentrations of elements in samples prepared from an aqueous multi-element standard solution.  相似文献   

20.
Solid sample introduction into an ICP-MS by laser ablation is an effective method for the total analysis of rare earth elements (REEs) in soils because no digestion is needed. A problem of the method, however, is the difference of the ablated mass for each laser shot. Therefore, internal standard for the compensation of signal instability, sample preparation, and the calibration method have to be carefully chosen.The analyzed sample was a certified standard provided by IAEA (SOIL-7). The sample was mixed with an internal standard solution and polyethylene (PE), dried, homogenized in a ball-mixer/mill, and pressed to a pellet. For the calibration 5 external standards with increasing REEs concentrations (0.4–20 g/g) as well as a blank were prepared in the same way.The analysis of the pellets was performed on a VG PlasmaQuad II + with a LaserLab unit. The laser ablation-cell was modified to improve the sample particle transportation characteristics and to allow a quicker sample-exchange. The pellets were ablated from six different spots for 60 s each with a laser-repetition rate of 4 Hz.The correlation coefficients of the calibration curves based on 5 standards, were better than 0.995. The concentrations cA of the 15 REEs in the soil sample were determined with an average relative confidence interval 100(CI)/cA of 6.95%, as a figure for the precision. This good precision have been obtained with a new laser ablation cell, which will be described in detail.With 2 exceptions (Ce and La) the measured concentrations were within the confidence intervals (CI) of the certified values. Therefore, with respect to accuracy and precision, the presented method offers a convenient way to analyze homogeneous and powdered soil samples for REE's without digestion. Since a good calibration for the REE determination may be obtained, the laser sampling variance (within the sample) is less significant than the analytical variance. Automation of the method is possible by construction of an autosampler based on the modified laser cell.Presented in part at the 1993 European Winter Conference on Plasma Spectrochemistry, Granada, Spain  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号