首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of phase change in the presence of natural convection has been investigated. A model has been proposed based on the treatment of the release/absorption of latent heat as a heat source/sink in combination with the standard Galerkin finite element method with a primitive variable formulation on a fixed grid. To demonstrate the capabilities of the model, three cases of phase change of an aluminium alloy in the presence of natural convection arc considered, i.e. solidification, melting and combined solidification and melting. The solidification of water in a square cavity is modelled as another example, taking into account the density extremum, and the results are compared with a previously published work.  相似文献   

2.
An enthalpy-based Lattice Boltzmann method (LBM) with double-distribution function (DDF) model is used to investigate numerically the effects of inserting a porous matrix on the heat transfer performance of the phase change material (PCM). Simulations are carried out for melting of ice in saturated Al2O3 porous matrix encapsulated in a concentric annulus. The process is considered as a conduction/convection controlled phase change problem at a representative elementary volume (REV) scale. The present results are validated by previous published numerical simulations of melting with and without porous media. In this research paper, the effects of decreasing the porosity on the temperature contours, flow patterns within the melt zone, complete melting time of the PCM and average Nusselt number are discussed qualitatively and quantitatively.  相似文献   

3.
Experiments were performed with a new radioscopic flow visualization technique on natural convection during melting of a binary metallic Ga-In alloy. This technique provides visualization of the density fields within opaque low Prandtl number fluids and their solids. Upon applying a horizontal temperature gradient to a gallium melt alloyed with 5 weight percent indium, the binary melt developed a vertical concentrational stratification and heat transfer was by conduction only. Convective flow developed at a higher temperature difference, which may be termed “critical”. After reducing the temperature difference the thermosolutal convection breaks down and a conductive state reappears at ΔT0 K. This threshold for onset of natural convection in binary Ga-In melts is in need of a theoretical explanation.  相似文献   

4.
A reference solutions for phase change involving convection in the melt is currently missing. In the present study, we focus on the problem of melting of pure tin in a square cavity heated from the side, which is used as a benchmark test problem. The mathematical model used for the simulations is based on the enthalpy formulation. Extensive numerical computations are performed with grids as fine as 800 × 800. The convergence of the numerical solution is demonstrated and its level assessed. Data values and plots are provided for use as a reference solution. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
A finite element, thermally coupled incompressible flow formulation considering phase‐change effects is presented. This formulation accounts for natural convection, temperature‐dependent material properties and isothermal and non‐isothermal phase‐change models. In this context, the full Navier–Stokes equations are solved using a generalized streamline operator (GSO) technique. The highly non‐linear phase‐change effects are treated with a temperature‐based algorithm, which provides stability and convergence of the numerical solution. The Boussinesq approximation is used in order to consider the temperature‐dependent density variation. Furthermore, the numerical solution of the coupled problem is approached with a staggered incremental‐iterative solution scheme, such that the convergence criteria are written in terms of the residual vectors. Finally, this formulation is used for the solutions of solidification and melting problems validating some numerical results with other existing solutions obtained with different methodologies. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, a transient heat transfer process of freezing water inside a two-dimensional square cavity has been investigated numerically. Water was used as a phase-change medium, and the numerical model has been created with control volume approach by using C++ programming language. To be able to accelerate the numerical calculations, CUT (Consistent-Update-Technique) algorithm has been implemented in the numerical code. Span-wise variations of the vertical component of the velocity have been represented in comparison with the experimental measurements from the literature at various vertical positions to examine the accuracy of the numerical scheme. The influence of natural convection has been considered by comparing the conduction and convection dominated solidification under same boundary conditions. Comparative results have been obtained regarding time-wise variations of the cold wall temperature and the dimensionless effectiveness. Moreover, the streamlines and isotherms have been represented to understand the differences between the conduction and convection driven phase change processes.Results indicate that natural convection becomes remarkable and has different forms at the initial periods of the phase change process. Increasing the effect of natural convection in the cavity increases the cooling rate of water. Near the density inversion temperature of water (4°C), temperature variations fluctuate and counter currents observed in the domain.  相似文献   

7.
Three-dimensional melting of ice around a liquid-carrying tube placed in an adiabatic rectangular cavity is investigated mainly by means of a numerical analysis. Natural convection in the melt layer enhances melting by about 1.2 times compared with the approximate solution of a conduction mode derived from London and Seban and Hausen. The morphology of the melt layer changes in axial direction. Melting is not sensitive to the cavity height and the tube length, but is very responsive to the liquid inlet temperature.  相似文献   

8.
Heat transfer and fluid flow processes of natural convection melting of a phase change material are simulated numerically inside a partially heated square cavity. The momentum and energy equations are solved by using enthalpy-based lattice Boltzmann method combined with multi distribution function model. In this communication, the dependence of liquid fraction, temperatures of vertical nodes and average Nusselt number on the positions of heated plates is investigated quantitatively.  相似文献   

9.
In this study, a numerical investigation of melting phenomenon with natural convection in a cavity with fin has been performed using enthalpy‐based lattice Boltzmann method. The lattice D2Q9 model was applied to determine the density and velocity fields, and the D2Q5 model for the temperature field. The effect of vertical position and length of the fin on the melting rate was studied. The simulations were carried out for Stefan number of 10, Rayleigh number of 10 5 and relative thermal conductivity (kfinkfluid) ranging from 5 to 30. The obtained results show that the rate of melting increases when the relative thermal conductivity and the length of the fin become greater. We also found that the variation of vertical position of the fin from bottom to middle has an insignificant effect on melting while it causes the increase of full melting time when the fin is mounted on the top of the cavity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Melting characteristics of phase change material by natural convection heat transfer inside horizontal rectangular capsules are examined experimentally. The capsules are heated isothermally and three kinds of aspect ratios (qH/W=3, 1 and 1/3) are provided. Octadecane and ice are used, respectively, as the phase change material. A method of analysis applying the empirical correlations for natural convection heat transfer in a vertical or horizontal enclosure to the melting in the rectangular capsules is presented. The predicted results show good agreement with the experimental data. For the melting of octadecane and ice, it is found that the effect of aspect ratio on the melting process is not significant for the range ofB=1/3 to 3.  相似文献   

11.
A high accuracy numerical model is used to simulate an alternate melting and solidification cycle of a phase change material (PCM). We use a second order (in time and space) finite-element method with mesh adaptivity to solve a single-domain model based on the Navier-Stokes-Boussinesq equations. An enthalpy method is applied to the energy equation. A Carman-Kozeny type penalty term is introduced in the momentum equation to bring the velocity to zero inside the solid region. The mesh is dynamically adapted at each time step to accurately capture the interface between solid and liquid phases, the boundary-layer structure at the walls and the multi-cellular unsteady convection in the liquid. We consider the basic configuration of a differentially heated square cavity filled with an octadecane paraffin and use experimental and numerical results from the literature to validate our numerical system. The first study case considers the complete melting of the PCM (liquid fraction of 95%), followed by a complete solidification. For the second case, the solidification is triggered after a partial melting (liquid fraction of 50%). Both cases are analysed in detail by providing temporal evolution of the solid-liquid interface, liquid fraction, Nusselt number and accumulated heat input. Different regimes are identified during the melting-solidification process and explained using scaling correlation analysis. Practical consequences of these two operating modes are finally discussed.  相似文献   

12.
A two-dimensional numerical simulation of natural convection in a rectangular enclosure heated from below and cooled from above has been conducted with non-Newtonian phase-change-material (PCM) microcapsulate slurry with latent heat capacities. The formulation of the mathematical model in dimensionless co-ordinates and discretization of the governing equations have been done using the finite volume method. Both natural convection and heat transfer characteristics are discussed about natural convection with PCM microcapsulate slurry, which exhibits the pseudoplastic non-Newtonian fluid behavior and a peak value in the specific heat capacity with latent heat. The viscosity of the present PCM microcapsulate slurry is assumed to follow the Ostwald-de Waele power law fluid model with the power-law index n and the consistency coefficient K. The effects of phase-change material, the mass concentration, and the aspect ratio Ar on the natural convection heat transfer are described, respectively. By comparing with the results of microcapsule slurry without phase change, the enhancement in heat transfer is found in microcapsule slurry with phase change during the phase change temperature range. Numerical simulations are performed in the following parametric ranges: the width–height aspect ratio of the enclosure Ar from 2 to 20, the mass concentrations C m of the slurry from 10 to 40%, power law index n of the slurry from 0.89 to 1.0 and Rayleigh numbers Ra ranges from 103 to 107.  相似文献   

13.
On the basis of the existing density distribution function reconstruction operator, the temperature distribution operator was derived to calculate heat transfer by coupling the lattice Boltzmann method (LBM) with the finite volume method. The present coupling model was validated by two‐dimensional natural convection flows with and without an isolated internal vertical plate. The results from the coupling model agree well with those from the pure‐finite volume method, pure‐LBM and references, and all the physical quantities cross the coupled interface smoothly. On the basis of residual history curves, it is likely that the convergence property and the numerical stability of the present model are better than those of the pure‐LBM at fine grid numbers and high Rayleigh numbers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
浮区法因具有无坩埚接触污染的生长优点而成为生长高完整性和高均匀性单晶材料的重要技术.但熔体中存在的毛细对流会给浮区法晶体生长带来极大挑战,这是由于对流的不稳定会导致晶体微观瑕疵的产生和宏观条纹等缺陷的形成.为了提高浮区法生长单晶材料的品质,研究浮区法晶体生长中毛细对流特性及如何控制其不稳定性显得尤为重要.本文采用数值模拟的方法对半浮区液桥内SixGe1-x体系中存在的热质毛细对流展开研究并施加旋转磁场对其进行控制.结果表明:纯溶质毛细对流表现为二维轴对称模式,温度场主要由热扩散作用决定,而浓度场则由对流和溶质扩散共同支配;纯热毛细对流呈现三维稳态非轴对称流动,浓度分布与熔体内热毛细对流的流向密切相关,等温线在对流较大的区域发生弯曲;耦合溶质与热毛细对流则为三维周期性旋转振荡流.施加旋转磁场后,熔体周向速度沿径向向外增大,熔体内浓度场和流场均呈现二维轴对称分布.  相似文献   

15.
A numerical study is made of the heat loss by natural convection of water within a horizontal circular cylinder with wall temperature decreasing at a constant rate. The particular situation of water with maximum density at 4 °C is formulated in dimensionless relations based on a linear relationship between the water thermal expansion coefficient and the temperature. Such an approach leads to an exhaustive solution in terms of a non linear Rayleigh number. The link is also established with the standard situation where the hypothesis of a linear relationship between density and temperature is applicable. In particular it is shown that the quasi steady state results obtained for a standard situation become equilibrium curves to which the system tends with increasing difference between the temperature of the boundary and 4 °C. A complete numerical solution is obtained for non linear Rayleigh numbers ranging between 0 and 107. Previous numerical and experimental results on the horizontal circular cylinder are also discussed and recast in terms of the present dimensional approach.  相似文献   

16.
A numerical simulation of combined natural convection and radiation in a square enclosure heated by a centric circular cylinder and filled with absorbing-emitting medium is presented. The ideal gas law and the discrete ordinates method are used to model the density changes due to temperature differences and the radiation heat transfer correspondingly. The influence of Rayleigh number, optical thickness and temperature difference on flow and temperature fields along with the natural convection, radiation and total Nusselt number at the source surfaces is studied. The results reveal that the radiation heat transfer as well as the optical thickness of the fluid has a distinct effect on the fluid flow phenomena, especially at high Rayleigh number. The heat transfer and so the Nusselt number decreases with increase in optical thickness, while increases greatly with increase in temperature difference. The variation in radiation heat transfer with optical thickness and temperature difference is much more obvious as comparison with convection heat transfer.  相似文献   

17.
A vertical melt column set up between an upper heating rod and a lower sample rod, i.e. the so-called halfzone system, is a convenient experimental tool for studying convection in the melt in floating-zone crystal growth. In order to help understand the convection observed in the melt column, a computer model has been developed to describe steady state, axisymmetrical thermocapillary flow and natural convection in the melt. The governing equations and boundary conditions are expressed in general non-orthogonal curvilinear co-ordinates in order to accurately treat the unknown melt/solid interface as well as all other physical boundaries in the system. The effects of key dimensionless variables on the following items are discussed: (1)convection and temperature distribution in the melt; (2) the shape of the melt/solid interface; (3) the height of the melt column. These dimensionless variables are the Grashof, Marangoni and Prandtl numbers.  相似文献   

18.
A mathematical model and numerical method are developed and used to investigate nonstationary flow and heat and mass transfer regimes in a melt appropriate to the conditions of Czochralski crystal growth. A study is made of the separate and combined influence of rotation and thermal, concentration, and thermocapillary convection on the distribution of the temperature and the dopant in the range of regime parameters corresponding to large charging masses of the melt with small value of the kinematic viscosity. Large-scale fluctuations are found to occur when rotation and thermal convection interact. Thermocapillary convection is shown to have an important influence on the resulting motion when it interacts with the thermal and concentration forms of convection. A comparison is made with the results of experimental and theoretical investigations of other authors.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 55–65, January–February, 1981.  相似文献   

19.
Finite time thermodynamic analysis is applied to the contact melting process of phase change material inside a horizontal cylindrical capsule. With the minimum entropy generation in given time as the objective function the quadratic nonlinear ordinary differential equation that the optimal melting process should be satisfied is derived. The dimensionless liquid height, melt liquid film thickness, Nusselt number, melting rate, optimal wall temperature and entropy generation are obtained by the numerical method. The optimal results are discussed and compared with the unoptimizable analytical results under the condition of constant wall temperature. It is found that the heat transfer and thermodynamics performance of the optimal melting process is better than that of the melting with constant wall temperature.  相似文献   

20.
A three-dimensional numerical study was made to investigate effects of fin angle, fin surface emissivity, and tube wall temperature on heat transfer enhancement for a longitudinal externally-finned tube placed vertically in a small chamber. The numerical model was first validated through comparison with experimental measurements and the appropriateness of general boundary conditions was examined. The numerical results show that the mean Nusselt number increases with Rayleigh number for all the fin angles investigated. The maximum heat transfer rate per mass occurs when the fin angle is about 60° for fin surface emissivity between 0.7 and 0.8 and 55° when the surface emissivity increases to 0.9. With increasing tube wall temperature, both the natural convection and radiation heat transfer are enhanced, but the fraction of radiation heat transfer decreases in the temperature range studied. Radiation fraction increases with increasing fin surface emissivity. Both convection and radiation heat transfer modes are important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号