首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
New polar vanadium tellurite enantiomers have been synthesized under mild hydrothermal conditions through the use of sodium metavanadate, sodium tellurite and enantiomerically pure sources of either R-3-aminioquinuclidine or S-3-aminioquinuclidine. [R-C7H16N2][V2Te2O10] and [S-C7H16N2][V2Te2O10] contain [V2Te2O10]n2n layers constructed from [(VO2)2O(TeO4)2] monomers. Steric effects associated with the hydrogen-bonding network between the [V2Te2O10]n2n layers and [C7H16N2]2+ result in polar structures and crystallization in the space group P21 (no. 4). Electron localization functions were calculated to visualize the tellurite stereoactive lone pairs. Both iterative and non-iterative Hirshfeld techniques were evaluated as means to determine atomic partial charges, with iterative Hirshfeld charges more accurately representing charge distributions in the reported enantiomers. These charges were used to calculate both component and net dipole moments. [R-C7H16N2][V2Te2O10] and [S-C7H16N2][V2Te2O10] exhibit dipole moments of 17.37 and 16.62D, respectively. [R-C7H16N2][V2Te2O10] and [S-C7H16N2][V2Te2O10] both display type 1 phase-matching capabilities and exhibit second harmonic generation activities of ∼50×α-SiO2.  相似文献   

2.
Two novel lanthanum(III) silicate tellurites, namely, La4(Si5.2Ge2.8O18)(TeO3)4 and La2(Si6O13)(TeO3)2, have been synthesized by the solid state reactions and their structures determined by single crystal X-ray diffraction. The structure of La4(Si5.2Ge2.8O18)(TeO3)4 features a three-dimensional (3D) network composed of the [(Ge2.82Si5.18)O18]4− tetrahedral layers and the [La4(TeO3)4]4+ layers that alternate along the b-axis. The germanate-silicate layer consists of corner-sharing XO4 (X=Si/Ge) tetrahedra, forming four- and six-member rings. The structure of La2(Si6O13)(TeO3)2 is a 3D network composed of the [Si6O13]2− double layers and the [La2(TeO3)2]2+ layers that alternate along the a-axis. The [Si6O13]2− double layer is built by corner-sharing silicate tetrahedra, forming four-, five- and eight-member rings. The TeO32− anions in both compounds are only involved in the coordination with La3+ ions to form a lanthanum(III) tellurite layer. La4(Si5.2Ge2.8O18)(TeO3)4 is a wide band-gap semiconductor.  相似文献   

3.
Two new potassium vanadium phosphates have been prepared and their structures have been determined from analysis of single crystal X-ray data. The two compounds, K3(VO)(V2O3) (PO4)2(HPO4) and K3(VO)(HV2O3)(PO4)2(HPO4), are isostructural, except for the incorporation of an extra hydrogen atom into the nearly identical frameworks. The structures consist of a three-dimensional network of [VO]n chains connected through phosphate groups to a [V2O3] moiety. Magnetic susceptibility experiments indicate that in the case of the di-hydrogen compound, there are no significant magnetic interactions between the three independent vanadium (IV) centers. Crystal data: for K3(VO)(V2O3)(PO4)2 (HPO4), Mr = 620.02, orthorhombic space group Pnma (No. 62), a = 7.023(4) Å, b = 13.309(7) Å, c = 14.294(7) Å, V = 1336(2) Å3, Z = 4, R = 5.02%, and Rw = 5.24% for 1238 observed reflections [I > 3σ(I)]; for K3(VO)(HV2O3)(PO4)2(HPO4), Mr = 621.04, orthorhombic space group Pnma (No. 62), a = 6.975(3) Å, b = 13.559(7) Å, c = 14.130(7) Å, V = 1336(1) Å3, Z = 4, R = 6.02%, and Rw = 6.34% for 1465 observed reflections [I > 3σ(I)].  相似文献   

4.
The phase diagram of the 2TeO2 · V2O5-Na2O · V2O5 · 2TeO2 system is studied by X-ray diffraction, ir spectroscopy, and DTA. A new compound with a composition of Na2O · 3V2O5 · 6TeO2 is established. The ir spectra of the alkaline trivanadates are interpreted. They are considered as structural analogs of the new phase. As a result of this comparison, the postulate is made that the main structural units in the Na2O · 3V2O5 · 6TeO2 compound are V2O8 groups, while tellurium is present both in the TeO3 and TeO4 groups. Contrary to the crystal phases, in glasses the transition from VO5 toward VO4 does not proceed through the formation of new structural units of vanadium; but rather a gradual transition of the structure is observed with a change in the composition from 2TeO2 · V2O5 to Na2O · V2O5 · 2TeO2.  相似文献   

5.
A novel layered vanadium arsenate [V4O7(HAsO4)2(o-phen)2] 1 (o-phen=o-phenanthroline) was synthesized by the hydrothermal reaction of V2O5, ZnCl2, Na2HAsO4·7H2O, o-phenanthroline (o-phen) and water. Its structure was determined by elemental analyses, ESR spectrum, XPS spectrum, TG analysis, IR spectrum and the single-crystal X-ray diffraction. Compound 1 crystallizes in monoclinic system, space group P2/c, a=10.122(2) Å, b=9.867(2) Å, c=15.367(3) Å, β=102.83(3)°, V=1496.4(5) Å3, Z=1, λ(MoKα)=0.71073 Å, (R(F)=0.0397 for 3422 reflections). Data were collected on a Rigaku R-AXIS RAPID IP diffractometer at 293 K in the range of 2.06°<θ<27.48°. The title compound contains an unusual two-dimensional (2D) As-V-O layer with four-, six- and eight-membered rings. The chelating o-phen ligands project perpendicularly above and below the undulating layer. 1 represents the first example of 2D inorganic vanadium arsenate backbone grafted with the directly coordinated organic ligands. Furthermore, the 3D supermolecular architecture is formed by π-π stacking interactions of the o-phen groups between adjacent layers.  相似文献   

6.
The first organically templated vanadium tellurites, [H2en][(VO2)(TeO3)]2·H2O (1, en=ethylenediamine) and [H2pip][(VO2)(TeO3)]2 (2, pip=piperazine) have been synthesized by hydrothermal reactions and structurally characterized. Both compounds feature a [(VO2)(TeO3)] anionic layer containing V2Te2 four-member rings and V4Te4 eight member rings. The vanadium (V) atom is five coordinated by three tellurite oxygens and two terminal oxygen atoms in a distorted trigonal bipyramidal geometry. The interconnection of the VO5 polyhedra by bridging tellurite groups leads to a 2D corrugated anionic inorganic layer. The doubly protonated template cations and the lattice water molecules in 1 are located at the interlayer space and are involved in hydrogen bonding. The doubly protonated template cation in 2 is not involved in hydrogen bonding with the anionic inorganic layer.  相似文献   

7.
A new ammonium vanadium tellurate, (NH4)4{(VO2)2[Te2O8(OH)2]}·2H2O ( 1 ) was hydrothermally synthesized and characterized by elemental analyses, IR spectrum, TG analysis, and single crystal X–ray diffraction. Compound 1 crystallizes in the monoclinic system, space group P21/n, a = 7.3843(15) Å, b = 17.111(3) Å, c = 7.3916(15) Å, β = 118.88(3)°, V = 817.9(3) Å3, Z = 2, R1 (I>2σ(I)) = 0.0235, wR2 (all data) = 0.0462. The structure of 1 consists of infinite anionic chains, {(VO2)2[Te2O8(OH)2]}4? which contain octahedral VO6 and TeO5OH units. Each octahedral VO6 and TeO5OH unit is connected by sharing an edge to form V2O10 and Te2O8(OH)2 binuclear units. The V2O10 and Te2O8(OH)2 binuclear units are alternatively connected to one another, creating complete infinite {(VO2)2[Te2O8(OH)2]}4? chains along the c direction. The anionic chains are separated by ammonium cations and water molecules that link the chains through a network of hydrogen bonds. In addition, the structure contains an extended network of O–H·····O hydrogen bonds between the chains.  相似文献   

8.
A novel polyoxometalate [Cu(phen)2]3{PW4VIW5VV3IVO40(VIVO)3[Cu(en)2]}4H2O 1 (en=ethylenediamine, phen=1,10-phenanthroline) has been synthesized hydrothermally and characterized by elemental analysis, IR, XPS, TG, EPR and single-crystal X-ray diffraction analysis. The crystal structure analysis shows that compound 1 contains a novel highly reduced tri-capped and mono-supported pseudo-Keggin-type heteropolyanion, {PW4VIW5VV3IVO40(VIVO)3[Cu(en)2]}6−, three [Cu(phen)2]2+ cations and four lattice water molecules. They are further linked to form three-dimensional supramolecular networks through extensive hydrogen bonding and ππ stacking interactions. Interestingly, the water dimer and terminal oxygen of the cluster polyanion constitute a beautiful supramolecular helix chain. The heteropolyanion is the first example of tri-capped and mono-supported pseudo-Keggin-type tungstovanadophosphate and the pH value is crucial for obtaining compound 1 in synthetic procedure.  相似文献   

9.
A new quaternary lanthanide alkaline-earth tellurium(IV) oxide, La2Ba(Te3O8)(TeO3)2, has been prepared by the solid-state reaction and structurally characterized. The compound crystallizes in monoclinic space group C2/c with a=19.119(3), b=5.9923(5), c=13.2970(19) Å, β=107.646(8)°, V=1451.7(3) Å3 and Z=4. La2Ba(Te3O8)(TeO3)2 features a 3D network structure in which the cationic [La2Ba(TeO3)2]4+ layers are cross-linked by Te3O84− anions. Both band structure calculation by the DFT method and optical diffuse reflectance spectrum measurements indicate that La2Ba(Te3O8)(TeO3)2 is a wide band-gap semiconductor.  相似文献   

10.
The hybrid 2D compound [{Cu(bpy)}2(VO)3(PO4)2(HPO4)2]·2H2O (1), has been investigated due to its interesting magnetic and catalytic properties. Compound (1) acts as an efficient catalyst in the epoxidation of cyclohexene and styrene. The chemoselectivity towards the epoxidation of cyclohexene is notoriously higher than the one observed towards styrene. The bulk antiferromagnetic behaviour of [{Cu(bpy)}2(VO)3(PO4)2(HPO4)2]·2H2O (1) can be well described with a pentanuclear model, using five J values. Both antiferromagnetic and ferromagnetic interactions mediated by phosphate bridges are found to be present in this hybrid copper(II)–vanadium(IV) material.  相似文献   

11.
A novel lithium copper vanadate LiCu2VO4(OH)2 (I) and Volborthite Cu3V2O7(OH)2 are two phases obtained at 170 °C by hydrothermal synthesis during the study of the CuO; V2O5; Li2O; H2O system. Compound (I) crystallizes in the orthorhombic system, with the space group P212121 (No. 19) and with the unit-cell parameters a=9.6086(2) Å, b=8.4482(2) Å, c=5.8938(1) Å. The structure was determined from powder by an “ab initio” method using the EXPO software and refined with GSAS, a Rietveld refinement package. Wave-like layers of rutile-type copper chains sharing vertex with the neighbor chains, are linked into a three-dimensional framework by rows of alternating tetrahedra of vanadium and trigonal bipyramids of lithium which share edges and vertices with the copper octahedra.  相似文献   

12.
Compounds of the general formula V2 − yWyO5 + δ < eqid3 > nH2O (0 < y ≤ 0.25) with the layered structure of polyvanadic acid V2O5 < eqid4 > nH2O (H2V12O31 − δ < eqid5 > nH2O) have been prepared from peroxide solutions using the sol–gel process. The samples contain up to 5–8 wt% vanadium (IV). The water content changes within the range of 0.7 ≤ n ≤ 1.5 in depending on tungsten concentration. The V2 − yWyO5 + δ < eqid6 > nH2O (y ≤ 0.125) form the thin films described an interlayer distance of 11.60 ± 0.05 Å. The thermal properties, IR, and X-ray photoelectron spectra of the compounds synthesized have been studied. The thermal stability of the phases increases with the rising of tungsten content. The dehydration finishes with the forming solid solution V2−yWyO5 and WO3. The electrical conductivity of V2−yWyO5 + δ < eqid7 > nH2O (0 < y ≤ 0.25) powders was measured between 293 and 473 K at a relative humidity of 12%. The activation energy of conduction is independent upon the W content and equals 0.22–0.24 eV. Partial substitution of vanadium for tungsten was found to reduce the conductivity of the phases. The conductivity of the films increases with the increasing of relative air humidity and is governed by proton diffusion across the V-O-W layers.  相似文献   

13.
A new class of M(II)–Hg(II) (M=Cu(II), Co(II), Ni(II)) mixed-metal coordination polymers, Cu(2-pyrazinecarboxylate)2HgCl2 (4), [Co(2-pyrazinecarboxylate)2(HgCl2)2] · 0.61H2O (5) and [Ni(2-pyrazinecarboxylate)2(HgCl2)2] · 0.77H2O (6), have been prepared by self assembly of metal-containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2(M=Cu(II), Co(II), Ni(II)), with HgCl2. Compounds 46 were characterized fully by IR, elemental analysis and single crystal X-ray diffraction. Compound 4 crystallized in the monoclinic space group C2/c, with a=17.916(5) Å, b=7.223(2) Å, c=13.335(4) Å, β=128.726(3)°, V=1346.2(6) Å3, Z=4. It contains alternating Hg(II) and Cu(II) metal centers that are cross-linked by 2-pyrazinecarboxylate spacers and chlorine co-ligands to generate a unique three-dimensional Hg(II)–Cu(II) mixed metal framework. Compound 5 crystallized in the triclinic space group P , with a=6.3879(7) Å, b=6.6626(8) Å, c=13.2286(15) Å, α=96.339(2)°, β=91.590(2)°, γ=113.462(2)°, V=511.71(10) Å3, Z=1. Compound 6 also crystallized in the triclinic space group P , with a=6.3543(8) Å, b=6.6194(8) Å, c=13.2801(16) Å, α=96.449(2)°, β=92.263(2)°, γ=113.541(2)°, V=506.67(11) Å3, Z=1. Compounds 5 and 6 are isostructural and in the solid state the Hg(II)M(II)Hg(II) units are connected by Hg2Cl2 linkages to produce a novel M(II)–Hg(II) (M=Co(II), Ni(II)) zigzag mixed-metal chain, in which a new type of M–M′–M′–M array was observed. The metal containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2 (M=Cu(II), Co(II), Ni(II)), exhibit different connectivities to HgCl2 depending on the metal cation contained within them.  相似文献   

14.
A new layered vanadium oxide [H3N(CH2)4NH3](V6O14) was synthesized hydrothermally under autogenous pressure at 180°C for 48 h from a mixture of H2N(CH2)4NH2 and V2O5 in aqueous solution. Its structure was determined from single-crystal X-ray diffraction at room temperature with final R=0.0774 and Rw=0.0893. It crystallizes in the monoclinic system (space group P21/n with a=9.74(2) Å, b=6.776(5) Å, c=12.60(2) Å, β=96.1(1)°, V=827(2) Å3 and Z=2). This compound contains mixed-valence V5+/V4+ vanadium oxide layers built from [VVO4] tetrahedra and pairs of edge-sharing [VIVO5] square pyramids with protonated organic amines occupying the interlayer space.  相似文献   

15.
Synthetic Cs(VO2)3(TeO3)2 is built up from infinite sheets of distorted octahedral VVO6 groups, sharing vertices. These octahedral layers are “capped” by Te atoms (as parts of pyramidal [TeIVO3]2– groups) on both faces of each V/O sheet, with inter‐layer, 12‐coordinate, Cs+ cations providing charge compensation. Cs(VO2)3(TeO3)2 is isostructural with M(VO2)3(SeO3)2 (M = NH4, K). Crystal data: Cs(VO2)3(TeO3)2, Mr = 732.93, hexagonal, space group P63 (No. 173), a = 7.2351(9) Å, c = 11.584(2) Å, V = 525.1(2) Å3, Z = 2, R(F) = 0.030, wR(F 2) = 0.063.  相似文献   

16.
A novel organically templated vanadium tellurite (NH3CH2CH2NH3)2V2Te6O18 (1) has been hydrothermally synthesized and characterized by elemental analyses, IR, thermal stability analysis, magnetic susceptibilities and single crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system, space group P21/n, , , , β=94.789(4)°, , Z=2, R1[I>2σ(I)]=0.0187, wR2[I>2σ(I)]=0.0482. Compound 1 exhibits a novel three-dimensional (3D) vanadium tellurite anion framework composed of vanadium, tellurium, and oxygen atoms through covalent bonds, with the [NH3CH2CH2NH3]2+ cations residing in the channels.  相似文献   

17.
A dinuclear copper(Ⅱ) complex[Cu2(TATP)2(L-Leu)2(CIO4)2]2·2H2Owas synthesized and characterized, where, TATP=1,4,8,9-tetraazatriphenylene, and L-Leu=L-leucinate. The complex was crystallized in the triclinic space group P1, with two independent molecules in a unit cell. Two Cu(Ⅱ) ions in each complex [Cu2(TATP)2(L-Leu)2(CIO4)2] molecule were found to be in different coordination geometries, i.e., Cu2 or Cu4 of a distorted square-pyramidal geometry coordinated with two nitrogens of TATP, the amino nitrogen and one carboxylate oxygen of L-Leu and one oxygen of perchlorate, and Cul or Cu3 with an octahedral geometry coordinated with the above stated similar coordinated atoms, and another carboxylate oxygen of L-Leu coordinating to Cu2 or Cu4. The complex can interact with CT-DNA by an intercalative mode and cleave pBR322 DNA in the presence of ascorbate.  相似文献   

18.
Two uranyl tellurates, AgUO2(HTeO5) (1) and Pb2UO2(TeO6) (2), were synthesized under hydrothermal conditions and were structurally, chemically, and spectroscopically characterized. 1 crystallizes in space group Pbca, a=7.085(2) Å, b=11.986(3) Å, c=13.913(4) Å, V=1181.5(5) Å3, Z=8; 2 is in P2(1)/c, a=5.742(1) Å, b=7.789(2) Å, c=7.928(2) Å, V=90.703(2) Å3, and Z=2. These are the first structures reported for uranyl compounds containing tellurate. The U6+ cations are present as (UO2)2+ uranyl ions that are coordinated by O atoms to give pentagonal and square bipyramids in compounds 1 and 2, respectively. The structural unit in 1 is a sheet consisting of chains of edge-sharing uranyl pentagonal bipyramids that are one bipyramid wide, linked through the dimers of TeO6 octahedra. In 2, uranyl square bipyramids share each of their equatorial vertices with different TeO6 octahedra, giving a sheet with the autunite-type topology. Sheets in 1 and 2 are connected through the low-valence cations that are located in the interlayer region. The structures of 1 and 2 are compared to those of uranyl compounds containing octahedrally coordinated cations.  相似文献   

19.
To investigate the influence of the size of aromatic chelate ligands on the frameworks of metal dicarboxylate polymers, two one-dimensional coordination compounds [Cu(BDC)(TATP)(H2O)] n (I) and [Cu(BDC)(DPPZ)] n (II), (BDC = 1.4-benzenedicarboxylate, TATP = 1,4,8,9-tetranitrogentrisphene, DPPZ = dipyrido[3,2-a:2′,3′-c]phenazine) were synthesized under similar conditions and structurally characterized by X-ray crystallography. Compounds I and II have the similar zigzag chain structure, but the substitution of TATP with DPPZ results in the difference of the degree of bending of the chain, indicating that the sizes of the rigid aromatic chelate ligands have important effect on the structures of their complexes.  相似文献   

20.
Studies of glasses and their crystalline products in the TeO2–V2O5 system were made in the 1400–400 cm–1 range. A continuous shift of the V=O-band from 1020 cm–1 to 940 cm–1 was found in the glasses with decreasing concentration of V2O5, as well as a sharp decrease in the intensity at 830 cm–1. On the basis of the results obtained, it is concluded that with increasing TeO2 content, the structure of the glasses is changed, caused by the breaking of the V–O–V bonds and the formation of Te–O–Te bridges.The IR-spectrum of the 2TeO2·V2O5 compound in both crystalline and vitreous states was studied for the first time. The behaviour of the absorption bands is related to the structure of the glasses studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号