首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Mixed‐valence copper(I/II) atoms have been introduced successfully into a Pb/I skeleton to obtain two heterometallic iodoplumbates, namely poly[bis(tetra‐n‐butylammonium) [bis(μ3‐dimethyldithiocarbamato)dodeca‐μ3‐iodido‐hexa‐μ2‐iodido‐tetracopper(I)copper(II)hexalead(II)]], {(C16H36N)2[Cu4ICuIIPb6(C3H6NS2)2I18]}n , (I), and poly[[μ3‐iodido‐tri‐μ2‐iodido‐iodido[bis(1,10‐phenanthroline)copper(I)]copper(I)copper(II)lead(II)] hemiiodine], {[CuICuIIPbI5(C12H8N2)2]·0.5I2}n , (II), under solution and solvothermal conditions, respectively. Compound (I) contains two‐dimensional anionic layers, which are built upon the linkages of CuII(S2CNMe2)2 units and one‐dimensional anionic Pb/I/CuI chains. Tetra‐n‐butylammonium cations are located between the anionic layers and connected to them via C—H…I hydrogen‐bonding interactions. Compound (II) exhibits a one‐dimensional neutral structure, which is composed of [PbI5] square pyramids, [CuII4] tetrahedra and [CuIIN4I] trigonal bipyramids. Face‐to‐face aromatic π–π stacking interactions between adjacent 1,10‐phenanthroline ligands stabilize the structure and assemble compound (II) into a three‐dimensional supramolecular structure. I2 molecules lie in the voids of the structure.  相似文献   

2.
Abstract. Two bis‐triazole‐bis‐amide‐based copper(II) pyridine‐2,3‐dicarboxylate coordination polymers (CPs), [Cu(2,3‐pydc)(dtb)0.5(DMF)] · 2H2O ( 1 ) and [Cu(2,3‐pydc)(dth)0.5(DMF)] · 2H2O ( 2 ) (2,3‐H2pydc = pyridine‐2,3‐dicarboxylic acid, dtb = N,N′‐bis(4H‐1,2,4‐triazole)butanamide, and dth = N,N′‐bis(4H‐1,2,4‐triazole)hexanamide), were synthesized under solvothermal conditions. CPs 1 and 2 show similar two‐dimensional (2D) structures. In 1 , the 2,3‐pydc anions bridge the CuII ions into a one‐dimensional (1D) chain. Such 1D chains are linked by the dtb ligands to form a 2D layer. The adjacent 2D layers are extended into a three‐dimensional (3D) supramolecular architecture by hydrogen‐bonding interactions. The electrochemical properties of 1 and 2 were investigated.  相似文献   

3.
The dinuclear complex [Cu2(HL)2(H2O)2](ClO4)2 ( 1 ) [H2L = 5′‐(pyridin‐2‐yl)‐1‐H,2′‐H‐3, 3′‐bis(1, 2,4‐triazole)] was obtained and fully characterized. It exhibits a centrosymmetry configuration, in which each copper(II) ion is pentacoordinate with four nitrogen atoms of two triazole ligands and one oxygen atom from a water molecule. The net atomic charges distribution and atomic orbital contribution to frontier molecular orbitals were obtained using the Gaussian 98 program with Hartree‐Fock method at LANL2DZ level, indicating that the copper(II) ion has the potential to accept the electron of O2 · –. The complex showed quasi‐reversible one‐electron CuII/CuI redox waves with redox potentials of –0.034 V. The SOD‐like activity (IC50) of 1 was measured to be 0.18 ± 0.01 μM by xanthine/xanthine oxidase‐NBT assay at pH 7.8. The relatively high SOD activity suggests that the positive charge of protonated triazole can effectively steer O2 · – to and from the active copper ion.  相似文献   

4.
As an important class of heterocyclic compounds, 1,3,4‐thiadiazoles have a broad range of potential applications in medicine, agriculture and materials chemistry, and were found to be excellent precursors for the crystal engineering of organometallic materials. The coordinating behaviour of allyl derivatives of 1,3,4‐thiadiazoles with respect to transition metal ions has been little studied. Five new crystalline copper(I) π‐complexes have been obtained by means of an alternating current electrochemical technique and have been characterized by single‐crystal X‐ray diffraction and IR spectroscopy. The compounds are bis[μ‐5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine]bis[nitratocopper(I)], [Cu2(NO3)2(C6H9N3S)2], (1), bis[μ‐5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine]bis[(tetrafluoroborato)copper(I)], [Cu2(BF4)2(C6H9N3S)2], (2), μ‐aqua‐bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}bis[nitratocopper(I)], [Cu2(NO3)2(C5H7N3S2)2(H2O)], (3), μ‐aqua‐(hexafluorosilicato)bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}dicopper(I)–acetonitrile–water (2/1/4), [Cu2(SiF6)(C5H7N3S2)2(H2O)]·0.5CH3CN·2H2O, (4), and μ‐benzenesulfonato‐bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}dicopper(I) benzenesulfonate–methanol–water (1/1/1), [Cu2(C6H5O3S)(C5H7N3S2)2](C6H5O3S)·CH3OH·H2O, (5). The structure of the ligand 5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine (Mepeta ), C6H9N3S, was also structurally characterized. Both Mepeta and 5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine (Pesta ) (denoted L ) reveal a strong tendency to form dimeric {Cu2L 2}2+ fragments, being attached to the metal atom in a chelating–bridging mode via two thiadiazole N atoms and an allylic C=C bond. Flexibility of the {Cu2(Pesta )2}2+ unit allows the CuI atom site to be split into two positions with different metal‐coordination environments, thus enabling the competitive participation of different molecules in bonding to the metal centre. The Pesta ligand in (4) allows the CuI atom to vary between water O‐atom and hexafluorosilicate F‐atom coordination, resulting in the rare case of a direct CuI…FSiF52− interaction. Extensive three‐dimensional hydrogen‐bonding patterns are formed in the reported crystal structures. Complex (5) should be considered as the first known example of a CuI(C6H5SO3) coordination compound. To determine the hydrogen‐bond interactions in the structures of (1) and (2), a Hirshfeld surface analysis has been performed.  相似文献   

5.
(Acetonitrile‐1κN)[μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S][1H‐benzimidazole‐2(3H)‐thione‐2κS]bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)2(CH3CN)] or [Cu2(tsac)2(Sbim)2(CH3CN)] [tsac is thiosaccharinate and Sbim is 1H‐benzimidazole‐2(3H)‐thione], (I), is a new copper(I) compound that consists of a triply bridged dinuclear Cu—Cu unit. In the complex molecule, two tsac anions and one neutral Sbim ligand bind the metals. One anion bridges via the endocyclic N and exocyclic S atoms (μ‐S:N). The other anion and one of the mercaptobenzimidazole molecules bridge the metals through their exocyclic S atoms (μ‐S:S). The second Sbim ligand coordinates in a monodentate fashion (κS) to one Cu atom, while an acetonitrile molecule coordinates to the other Cu atom. The CuI—CuI distance [2.6286 (6) Å] can be considered a strong `cuprophilic' interaction. In the case of [μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S]bis[1H‐benzimidazole‐2(3H)‐thione]‐1κS;2κS‐bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)3] or [Cu2(tsac)2(Sbim)3], (II), the acetonitrile molecule is substituted by an additional Sbim ligand, which binds one Cu atom via the exocylic S atom. In this case, the CuI—CuI distance is 2.6068 (11) Å.  相似文献   

6.
Under hydrothermal conditions, three new AgI coordination polymers, [Ag(L1)(Hmip)]n ( 1 ), [Ag(L2)0.5(ndc)0.5]n ( 2 ), and {[Ag(L3)0.5(Htbi)] · 0.25H2O}n ( 3 ) [H2mip = 5‐methylisophthalic acid, L1 = 1,4‐bis(2‐methylbenzimidazol‐1‐ylmethyl)benzene, H2ndc = 2,6‐naphthalenedicarboxylic acid, L2 = 1,3‐bis(2‐methylbenzimidazol‐1‐ylmethyl)benzene, H2tbi = 5‐tert‐butyl isophthalic acid, L3 = 1,4‐bis(5,6‐dimethylbenzimidazole)butane] were synthesized by employing flexible bis(benzimidazole) and dicarboxylic acid ligands. Polymer 1 displays a 2D 4‐connected 4L2 underlying net topology with the point symbol of (65.8) in standard representation. Compound 2 possesses a 2D uninodal 4‐connected Shubnikov tetragonal plane net (sql) based on a dinuclear AgI clusters with the point symbol (44.62), which is further extended into a 3D supramolecular framework by π–π interactions. Compound 3 possesses dinuclear molecular complex groups, which form chains by weak Ag–O (2.6 Å) coordination bonds, and further assembled into a 2D supramolecular layer by hydrogen bonds and π–π stacking interactions. These complexes exhibit intense fluorescent emissions in solid state. UV/Vis diffuse reflection spectra and the excellent catalytic activity for the degradation of the congo red azo dye in a Fenton‐like process are discussed.  相似文献   

7.
Solvothermal reactions of Cu2(OH)2CO3 with 1,3‐bis(pyridin‐4‐yl)propane (bpp) in the presence of aqueous ammonia in 4‐iodotoluene/CH3CN or 1,4‐diiodobenzene/CH3CN afforded two [Cu2I2]‐based coordination polymers, namely catena‐poly[[[di‐μ‐iodido‐dicopper(I)]‐bis[μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′]] p‐toluidine tetrasolvate], {[Cu2I2(C13H14N2)2]·4C7H9N}n, (I), and the analogous 1,4‐diiodobenzene monosolvate, {[Cu2I2(C13H14N2)2]·C6H4I2}n, (II). The [Cu2I2] unit of (I) lies on a centre of symmetry at the mid‐point of the two I atoms, while that of (II) has a twofold axis running through the I...I line. In (I) and (II), each Cu centre is tetrahedrally coordinated by two μ‐I and two N atoms from two different bpp ligands. Each rhomboid [Cu2I2] unit can be considered as a four‐connecting node linked to the symmetry‐related [Cu2I2] units via two pairs of bpp ligands to form a one‐dimensional double chain along the c axis. The dimensions of the [Cu2I2(bpp)2]2 rings in (I) and (II) are different, which may be due to the presence of different guest solvent molecules in the structures. In (I), one p‐toluidine molecule, derived from an Ullmann coupling reaction of 4‐iodotoluene with ammonia, interacts with the [Cu2I2] cluster fragment through N—H...I hydrogen bonds, while the two p‐toluidine molecules interact via N—H...N hydrogen bonds. In (II), two I atoms of each 1,4‐diiodobenzene molecule are linked to the I atoms of the [Cu2I2] fragments from a neighbouring chain via I...I secondary interactions.  相似文献   

8.
In the tetranuclear copper complex tetrakis[μ‐3,5‐bis(2‐pyridyl)‐1,2,4‐triazolido]bis[3,5‐bis(2‐pyridyl)‐1,2,4‐triazolido]dicopper(I)dicopper(II) dihydrate, [CuI2CuII2(C12H8N5)6]·2H2O, the asymmetric unit is composed of one CuI center, one CuII center, three anionic 3,5‐bis(2‐pyridyl)‐1,2,4‐triazole (2‐BPT) ligands and one solvent water molecule. The CuI and CuII centers exhibit [CuIN4] tetrahedral and [CuIIN6] octahedral coordination environments, respectively. The three independent 2‐BPT ligands adopt different chelating modes, which link the copper centers to generate a chair‐like tetranuclear metallomacrocycle with metal–metal distances of about 4.4 × 6.2 Å disposed about a crystallographic inversion center. Furthermore, strong π–π stacking interactions and O—H...N hydrogen‐bonding systems link the tetracopper clusters into a two‐dimensional supramolecular network.  相似文献   

9.
From a predesigned grid, [CuII5CuI4L6] ? (I)2 ? 13 H2O ( 1 ), in which LH2 was a pyrazinyl‐triazolyl‐2,6‐substituted pyridine, we successfully synthesized an extended 3D complex, 1[{CuII5CuI8L6}{μ‐[CuI3(CN)6]}2 ? 2 CH3‐ CN] ( 2 ), that displayed unprecedented coexistence of all the five known coordination geometries of copper. Grid 1 displayed monovalent central metal exchange (CME) of CuI for AgI for the first time, as well as the formation of tri‐iodide in the crystalline state. These systems were investigated for their magnetic properties. Remarkably, grid 1 showed much higher catalytic activity than the Ag‐exchanged product for synthesis of a substituted triazole, 1‐benzyl‐4‐phenyl‐1H‐1,2,3‐triazole.  相似文献   

10.
Heteroleptic copper(I) complexes have been prepared from a macrocyclic ligand incorporating a 2,9‐diphenyl‐1,10‐phenanthroline subunit ( M30 ) and two bis‐phosphines, namely bis[(2‐diphenylphosphino)phenyl] ether (POP) and 1,3‐bis(diphenylphosphino)propane (dppp). In both cases, the diphenylphosphino moieties of the PP ligand are too bulky to pass through the 30‐membered ring of M30 during the coordination process, hence the formation of C2v‐symmetrical pseudo‐rotaxanes is prevented. When POP is used, X‐ray crystal structure analysis shows the formation of a highly distorted [Cu( M30 )(POP)]+ complex in which the POP ligand is only partially threaded through the M30 unit. This compound is poorly stable as the CuI cation is not in a favorable coordination environment due to steric constraints. By contrast, in the case of dppp, the bis‐phosphine ligand undergoes both steric and topological constraints and adopts a nonchelating coordination mode to generate [Cu2( M30 )2(μ‐dppp)](BF4)2. This compound exhibits metal‐to‐ligand charge transfer (MLCT) emission characterized by a very large Stokes’ shift (≈200 nm) that is not attributed to a dramatic structural distortion between the ground and the emitting states but to very weak MLCT absorption transitions at longer wavelengths. Accordingly, [Cu2( M30 )2(μ‐dppp)](BF4)2 shows unusually high luminescence quantum yields for CuI complexes, both in solution and in the solid state (0.5 and 7 %, respectively).  相似文献   

11.
In the tridentate ligand 2,6‐bis(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)pyridine, C23H19N7, both sets of triazole N atoms are anti with respect to the pyridine N atom, while in the copper complex aqua[2,6‐bis(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)pyridine](pyridine)(tetrafluoroborato)copper(II) tetrafluoroborate, [Cu(BF4)(C5H5N)(C23H19N7)(H2O)]BF4, the triazole N atoms are in the synsyn conformation. The coordination of the CuII atom is distorted octahedral. The ligand structure is stabilized through intermolecular C—H...N interactions, while the crystal structure of the Cu complex is stabilized through water‐ and BF4‐mediated hydrogen bonds. Photoluminiscence studies of the ligand and complex show that the ligand is fluorescent due to triazole–pyridine conjugation, but that the fluorescence is quenched on complexation.  相似文献   

12.
Two metal coordination polymers, [Cu2(btb)(CN)2]n ( 1 ) and [Ag2(btb)(muco)]n ( 2 ) [btb = 4, 4′‐bis(1, 2,4‐triazolyl‐1‐yl)‐biphenyl, H2muco = trans,trans‐muconic acid], were synthesized under solvothermal conditions and characterized by elemental analysis, IR spectroscopy, and X‐ray single‐crystal diffraction. Complex 1 exhibits a 1D ladder‐chain structure containing cyanide anions, which are generated in situ by the cleavage of C–C bond of acetonitrile molecules under solvothermal conditions, whereas 2 possesses a rare 3D framework with binodal 4, 6‐connected fsh topology. In addition, the thermal behavior, fluorescence and catalytic properties of the complexes for the degradation of methyl orange in a Fenton‐like process were investigated.  相似文献   

13.
An ethanolic solution of CuCl / ethylendiamine reacts with 1.3‐bis‐ (phenyltriazene)benzene in THF leading to the deprotonation of the bis triazene ligand to give orange crystals of [CuII(en)3][CuI4{(NNN‐Ph)2C6H4}3], an example of a rare complex salt of copper with mixed valence states. In the anion complex [CuI4{(NNNPh)2C6H4}3]2? the copper(I) ions are disposed linearly as single, bridged pairs in the two extremes of an axis, each of them presenting a trigonal bipyramidal alike coordination arrangement.  相似文献   

14.
Two new inorganic–organic hybrid compounds constructed from different polyoxometalates (POMs) and copper multinuclear clusters, [Cu(bmte)(H2Mo8O26)0.5]·3H2O (1) and [Cu3(bmte)3(HSiMo12O40)]·H2O (2) (bmte = 1,2-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)ethane), have been synthesized under hydrothermal conditions with a flexible double tetrazole-based thioether and characterized by IR, TG and single-crystal X-ray diffraction analyses. In compound 1, two bmte ligands chelate two CuI ions with three N atoms to form a binuclear nano-scale subunit [Cu2(bmte)2]2+, then the binuclear CuI subunits are connected by [Mo8O26]4− anions to build a one dimensional (1D) chain. In compound 2, a trinuclear nano-scale subunit [Cu3(bmte)3]3+ constructed from three CuI ions and three bmte ligands has been obtained, and the adjacent trinuclear subunits are linked by [SiMo12O40]4− anions to form a “zipper” 1D chain. The adjacent chains of the title compounds are ultimately extended into 2D layers by hydrogen bonds between bmte and POMs. The structural difference of the two compounds indicates that the POMs play an important structure-directed role on the final networks. In addition, the electrochemical behavior of 2-modified carbon paste electrode (2-CPE) and its electrocatalytic reduction of nitrite have been discussed.  相似文献   

15.
Through utilizing the flexible bis(triazole) ligand 1,3‐bis(1,2,4‐triazol‐1‐y1)propane (btp), the new Keggin POM‐templated compound, [Cd2(H2O)2(btp)4(SiMo12O40)] · 2H2O ( 1 ), was synthesized under hydrothermal conditions. It was characterized by single‐crystal X‐ray diffraction, elemental analysis, IR spectroscopy, thermogravimetric analysis, photoluminescence spectroscopy, and cyclic voltammetry. In compound 1 , the [SiMo12O40]4– polyanions serving as template induce the Cd–bis(triazole) coordination polymer to construct a ladder‐like chain. In the 1D chain, two btp ligands act as “middle rails”. The template polyanions insert into the grids of the 1D chain. Furthermore, these chains can construct a 3D supramolecular structure through hydrogen bondings.  相似文献   

16.
The polymeric compounds [{Cu2I2(C6H5CN)2[cyclo‐(CH3AsO)4]} · C6H5CN] ( 1 ) and [Cu6Br6(C6H5CN)4{cyclo‐(CH3AsO)4}] ( 2 ) may be prepared by reaction of the copper(I) halide with methylcycloarsoxane (CH3AsO)n in benzonitrile at 100 °C. 1 contains four‐membered (CuI)2 rings, 2 tricyclic Cu6Br6 units, that are connected through bridging (CH3AsO)4 ligands into infinite chains. π–π Stacking of terminal C6H5CN ligands from parallel chains leads to the construction of porous frameworks, whose cavities are large enough in the case of 1 to accommodate guest C6H5CN molecules. In the presence of CsI, the self‐assembly reaction of CuI with (CH3AsO)4 in H2O–CH3OH–CH3CN (at 20 °C) or CH3CN (at 130 °C) affords [Cs(H2O)2][Cu3I4{cyclo‐(CH3AsO)4}2] · 0.5 CH3OH ( 3 ) and Cs[Cu3I4{cyclo‐(CH3AsO)4}2] ( 4 ), whose 1‐ and 2‐dimensional anionic coordination polymers are linked together through respectively [Cs{cyclo‐(CH3AsO)4‐κ4O}2]+ and [Cs{Cu3I4‐κ4I}{cyclo‐(CH3AsO)4‐κ4O}] sandwiches.  相似文献   

17.
Because of their versatile coordination modes and strong coordination ability for metals, triazole ligands can provide a wide range of possibilities for the construction of metal–organic frameworks. Three transition‐metal complexes, namely bis(μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato)‐κ3N 2,O :N 13N 1:N 2,O‐bis[triamminenickel(II)] tetrahydrate, [Ni2(C3HN3O2)2(NH3)6]·4H2O, (I), catena‐poly[[[diamminediaquacopper(II)]‐μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato‐κ3N 1:N 4,O‐[diamminecopper(II)]‐μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato‐κ3N 4,O :N 1] dihydrate], {[Cu2(C3HN3O2)2(NH3)4(H2O)2]·2H2O}n , (II), (μ‐5‐amino‐1,2,4‐triazol‐1‐ide‐3‐carboxylato‐κ2N 1:N 2)di‐μ‐hydroxido‐κ4O :O‐bis[triamminecobalt(III)] nitrate hydroxide trihydrate, [Co2(C3H2N4O2)(OH)2(NH3)6](NO3)(OH)·3H2O, (III), with different structural forms have been prepared by the reaction of transition metal salts, i.e. NiCl2, CuCl2 and Co(NO3)2, with 1,2,4‐triazole‐3‐carboxylic acid or 3‐amino‐1,2,4‐triazole‐5‐carboxylic acid hemihydrate in aqueous ammonia at room temperature. Compound (I) is a dinuclear complex. Extensive O—H…O, O—H…N and N—H…O hydrogen bonds and π–π stacking interactions between the centroids of the triazole rings contribute to the formation of the three‐dimensional supramolecular structure. Compound (II) exhibits a one‐dimensional chain structure, with O—H…O hydrogen bonds and weak O—H…N, N—H…O and C—H…O hydrogen bonds linking anions and lattice water molecules into the three‐dimensional supramolecular structure. Compared with compound (I), compound (III) is a structurally different dinuclear complex. Extensive N—H…O, N—H…N, O—H…N and O—H…O hydrogen bonding occurs in the structure, leading to the formation of the three‐dimensional supramolecular structure.  相似文献   

18.
The new bifunctional ligand 4,4′‐(adamantane‐1,3‐diyl)bis(1,2,4‐triazole) (tr2ad) and benzene‐1,3,5‐tricarboxylate sustain complementary coordination bridging for the three‐dimensional framework of poly[[bis[μ3‐4,4′‐(adamantane‐1,3‐diyl)bis(1,2,4‐triazole)‐κ3N1:N2:N1′]bis(μ4‐benzene‐1,3,5‐tricarboxylato‐κ4O1:O1′:O3:O5)di‐μ3‐hydroxido‐κ6O:O:O‐tetracopper(II)] dihydrate], {[Cu4(C9H3O6)2(OH)2(C14H18N6)2]·2H2O}n. The net node is a centrosymmetric (μ3‐OH)2Cu4 cluster [Cu—O = 1.9525 (14)–2.0770 (15) Å and Cu...Cu = 3.0536 (5) Å] involving two independent copper ions in tetragonal pyramidal CuO4N and trigonal bipyramidal CuO3N2 environments. One carboxylate group of the anion is bridging and the other two are monodentate, leading to the connection of three hydroxide clusters and the generation of neutral coordination layers separated by 9.3583 (5) Å. The interlayer linkage is effected by μ3‐tr2ad ligands, with one triazole group N1:N2‐bridging and the second monodentate [Cu—N = 1.9893 (19), 2.010 (2) and 2.411 (2) Å]. In total, the hydroxide clusters are linked to six close neighbors within the carboxylate layer and to four neighbors via tr2ad bridges. Hydrogen bonding of solvent water molecules to noncoordinated triazole N atoms and carboxylate groups provides two additional links for the net, which adopts a 12‐connected topology corresponding to hexagonal closest packing. The study also introduces a new type of bis(triazole) ligand, which may find wider applications for supramolecular synthesis.  相似文献   

19.
In recent years, the use of copper N‐heterocyclic carbene (NHC) complexes has expanded to fields besides catalysis, namely medicinal chemistry and luminescence applications. In the latter case, multinuclear copper NHC compounds have attracted interest, however, the number of these complexes in the literature is still quite limited. Bis[μ‐1,3‐bis(3‐tert‐butylimidazolin‐2‐yliden‐1‐yl)pyridine]‐1κ4C2,N:N,C2′;2κ4C2,N:N,C2′‐dicopper(I) bis(hexafluoridophosphate), [Cu2(C19H25N5)2](PF6)2, is a dimeric copper(I) complex bridged by two CNC, i.e. bis(N‐heterocyclic carbene)pyridine, ligands. Each CuI atom is almost linearly coordinated by two NHC ligands and interactions are observed between the pyridine N atoms and the metal centres, while no cuprophilic interactions were observed. Very strong absorption bands are evident in the UV–Vis spectrum at 236 and 274 nm, and an emission band is observed at 450 nm. The reported complex is a new example of a multinuclear copper NHC complex and a member of a compound class which has only rarely been reported.  相似文献   

20.
The 1:1 adduct of N,N′‐bis(2‐chlorobenzylidene)ethylenediamine (cb2en) with copper(I) chloride proves to be an ionic compound with CuI‐centred cations and anions, [Cu(C16H14Cl2N2)2][CuCl2]·CH3CN. In the cation, the CuI atom has a flattened tetrahedral coordination geometry, with a small bite angle for the chelating ligands, which form a double‐helical arrangement around the metal centre. The anion is almost linear, as expected. The packing of the cations involves intermolecular π–π interactions, which lead to columns of translationally related cations along the shortest unit‐cell axis, with anions and solvent molecules in channels between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号