首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four new complexes, [Zn(btca)(2,2′‐bpy)] ( 1 ), [Mn(btca)(2,2′‐bpy)] ( 2 ), [Co(btca)(phen)] ( 3 ), and [Cu(btca)(phen)] ( 4 ), (H2btca=benzotriazole‐5‐carboxylic acid, 2,2′‐bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline), were successfully synthesized and characterized by elemental analysis, single crystal X‐ray diffraction, and IR spectroscopy. Complexes 1 – 4 crystallize in the orthorhombic system with space group of Pbca and show similar 2D layers, which are interlinked to supramolecular networks by π‐π stacking interactions. Furthermore, TGA curves show that complexes 1 – 4 have good thermal stability. Solid‐state fluorescent property of complex 1 was also investigated at room temperature.  相似文献   

2.
To explore the coordination possibilities of anthracene‐based ligands, three cadmium(ιι) complexes with anthracene‐9‐carboxylate ( L ) and relevant auxiliary chelating or bridging ligands were synthesized and characterized: Cd2( L )4(2bpy)2(μ‐H2O) ( 1 ), Cd2( L )4(phen)2(μ‐H2O) ( 2 ), and {[Cd3( L )6(4bpy)]} ( 3 ) (2bpy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline, and 4bpy = 4,4′‐bipyridine). Structural analyses show that complexes 1 and 2 both take dinuclear structures by incorporating the chelating 2bpy or phen ligand, which are further interlinked by intermolecular hydrogen‐bonding, π ··· π stacking, and/or C–H ··· π supramolecular interactions to generate higher‐dimensional supramolecular frameworks. Complex 3 has a one‐dimensional (1D) ribbon‐like structure, which is further assembled into a two‐dimensional (2D) layer, and a three‐dimensional (3D) framework by the co‐effects of interchain C–H ··· O hydrogen‐bonding and C–H ··· π supramolecular interactions. Moreover, the luminescent properties of these complexes were further investigated in detail.  相似文献   

3.
Four new transition metal coordination polymers, [Co(bpndc)(phen)(H2O)]n ( 1 ), [Co3(bpndc)3(2,2′‐bpy)2]n·0.5n(i‐C3H7OH) ( 2 ), and [M(bpndc)(2,2′‐bpy)2]n (M = Zn, 3 ; Cu, 4 ; H2bpndc = benzophenone ‐4,4′‐dicarboxylic acid; phen = 1,10‐phenanthroline; 2,2′‐bpy = 2,2′‐bipyridine) have been synthesized by the hydrothermal reactions and characterized by single crystal X‐ray diffraction, elemental analysis, and IR spectrum. Because of the introduction of different terminal auxiliary ligands, bpndc ligands in complexes 1 and 2 adopt different coordination modes. In complex 1 , bpndc ligands act as tridentate ligand and bridge CoII ions into 1D double‐stranded chains; while complex 2 possesses 2D (4,4) grids, where bpndc ligands adopt tetradente and pentadentate modes. Two such grids interpenetrate to form a novel catenane‐like layer. Complexes 3 and 4 are isostructural. Bpndc ligands adopt tetradentate mode and bridge metal ions forming 1D helical chains.  相似文献   

4.
Three new supramolecular compounds were synthesized and characterized with the formula of [Zn4(picO)4(phen)4]·11.25H2O ( 1 ), [Zn4(picO)4(2,2′‐bpy)4(H2O)4]·12H2O ( 2 ), and [Zn3(picO)3(bpe)5(H2O)3]n·8.5nH2O ( 3 ) (H2picO = 6‐hydroxypicolinic acid; phen = 1,10‐phenanthroline; 2,2′‐bpy = 2,2′‐bipyridine; bpe = 1,2‐bis(4‐pyridyl)ethane). For complexes 1 and 2 , picO ligands adopt tridentate, tetradentate and bidentate coordination modes to link zinc(II) ions into dimers, which are extended into 3D supramolecular structures through hydrogen bonds. Water chains with cyclic page‐like octamer and boat‐like heptamer water clusters are included, respectively. Complex 3 is of a 2D brick‐wall structure. Triple interpenetration occurs, and there are still cyclic chair‐like octamer water clusters in the channels. The fluorescent properties of complexes 1‐3 have also been investigated.  相似文献   

5.
A series of complexes (bpy)2LRu(II) and (Ph2bpy)2LRu(II), where bpy is 2,2′-bipyridine, Ph2bpy is 4,4′-diphenyl-2,2′-bipyridine and L is 1,10-phenanthroline (phen), [1]benzothieno[2,3-c][1,10]phenanthroline (btp), naphtho[1′,2′?:?5,4]thieno[2,3-c][1,10]phenanthroline [ntpl, l=linear], and naphtho[1′,2′?:?4,5]thieno[2,3-c][1,10]phenanthroline (ntph, h=helical) were synthesized and characterized using 2D COSY NMR spectra. The UV spectra were assigned to study their metal to ligand charge transfer (MLCT) excited states. Complexes of (bpy)2LRu(II) showed identical absorption wavelengths (λ max) for the MLCT of all four members of the series with the only variation being the intensity (log ε ) for each. The MLCT of (Ph2bpy)2LRu(II) showed the similar behavior only with different wavelengths showing that in this heteroleptic series of complexes the MLCT is exclusively to the bpy ligands with none to thienophenanthroline (btp, ntpl, or ntph).  相似文献   

6.
Two new CdII complexes, [Cd( ces )(phen)] ( 1 ) and {[Cd( ces )(bpy)(H2O)](H2O)}2 ( 2 ), were prepared by slow solvent evaporation methods from mixtures of cis‐epoxysuccinic acid and Cd(ClO4)2 · 6H2O in the presence of phen or bpy co‐ligand ( ces = cis‐epoxysuccinate, phen = 1,10‐phenanthroline, and bpy = 2,2′‐bipyridine). Single‐crystal X‐ray diffraction analyses show that complex 1 has a one‐dimensional (1D) helical chain that is further assembled into a two‐dimensional (2D) sheet, and then an overall three‐dimensional (3D) network by the interchain C–H ··· O hydrogen bonds. Complex 2 features a dinuclear structure, which is further interlinked into a 3D supramolecular network by the co‐effects of intermolecular C–H ··· O and C–H ··· π hydrogen bonds as well as π ··· π stacking interactions. The structural differences between 1 and 2 are attributable to the intervention of different 2,2′‐bipyridyl‐like co‐ligands. Moreover, 1 and 2 exhibit intense solid‐state luminescence at room temperature, which mainly originates from the intraligand π→π* transitions of aromatic co‐ligands.  相似文献   

7.
Four new transitional metal supramolecular architectures, [Zn(cca)(2,2′‐bpy)]n · n(2,2′‐bpy) ( 1 ), [Cu(cca)(2,2′‐bpy)]n ( 2 ), [Zn(bpdc)(2,2′‐bpy)(H2O)]n · 0.5nDMF · 1.5nH2O ( 3 ), and [Co(bpdc)(2,2′‐bpy)(H2O)]n · nH2O ( 4 ) (H2cca = p‐carboxycinnamic acid; H2bpdc = 4,4′‐biphenyldicarboxylic acid; 2,2′‐bpy = 2,2′‐bipyridine) were synthesized by hydrothermal reactions and characterized by single crystal X‐ray diffraction, elemental analyses, and IR spectroscopy. Although the metal ions in these four compounds are bridged by linear dicarboxylic acid into 1D infinite chains, there are different π–π stacking interactions between the chains, which results in the formation of different 3D supramolecular networks. Compound 1 is of a 3D open‐framework with free 2,2′‐bpy molecules in the channels, whereas compound 2 is of a complicated 3D supramolecular network. Compounds 3 and 4 are isostructural. Both compounds have open‐frameworks.  相似文献   

8.
The synthesis, characterization, photophysics, lipophilicity, and cellular properties of new phosphorescent ruthenium(II) polypyridine complexes functionalized with a dibenzocyclooctyne (DIBO) or amine moiety [Ru(N^N)2(L)](PF6)2 are reported (L=4‐(13‐N‐(3,4:7,8‐dibenzocyclooctyne‐5‐oxycarbonyl) amino‐4,7,10‐trioxa‐tridecanyl‐aminocarbonyl‐oxy‐methyl)‐4′‐methyl‐2,2′‐bipyridine bpy‐DIBO, N^N=2,2′‐bipyridine bpy ( 1 a ), 1,10‐phenanthroline phen ( 2 a ); L=4‐(13‐amino‐4,7,10‐trioxa‐tridecanylaminocarbonyl‐oxy‐methyl)‐4′‐methyl‐2,2′‐bipyridine bpy‐NH2, N^N=bpy ( 1 b ), phen ( 2 b )). The strain‐promoted alkyne–azide cycloaddition (SPAAC) reaction of the DIBO complexes 1 a and 2 a with benzyl azide were studied. Also, the DIBO complexes 1 a and 2 a can selectively label N‐azidoglycans located on the surface of CHO‐K1 and A549 cells that were pretreated with 1,3,4,6‐tetra‐O‐acetyl‐N‐azidoacetyl‐D ‐mannosamine (Ac4ManNAz). Additionally, the intracellular trafficking and localization of these biomolecules were monitored using laser‐scanning confocal microscopy. Interestingly, the biolabeling and cellular uptake efficiency of the DIBO complexes 1 a and 2 a were cell‐line dependent, as revealed by flow cytometry and ICP‐MS. Furthermore, the complexes showed good biocompatibility toward the Ac4ManNAz‐pretreated cells in the dark, but exhibited photoinduced cytotoxicity due to the generation of singlet oxygen.  相似文献   

9.
To determine the influence of the size of the aromatic chelate ligands on the frameworks of metal tretracarboxylate polymers, two new coordination polymers [Cd(btc)0.5 (2,2′‐bpy)] ( 1 ) and [Cd(btc)0.5(phen)]·H2O ( 2 ) (H4btc = biphenyl‐3,3′,4,4′‐tetracarboxylic acid, 2,2′‐bpy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline) have been synthesized under similar hydrothermal conditions. In complex 1 , the dimeric Cd2 units are linked by bridging btc4? ligand to form a 2D layered network, whereas complex 2 possesses a 3D metal‐organic framework consisting of the dimeric Cd2 units. The differences of two metal‐organic frameworks demonstrate that the size of the rigid aromatic chelate ligands have an important effect on the structures of their complexes. Additionally, the two complexes show strong fluorescence in the solid state at room temperature.  相似文献   

10.
To study the conversion from a meso form to a racemic form of tetrahydrofurantetracarboxylic acid (H4L), seven novel coordination polymers were synthesized by the hydrothermal reaction of Zn(NO3)2 ? 6 H2O with (2S,3S,4R,5R)‐H4L in the presence of 1,10‐phenanthroline (phen), 2,2′‐bipyridine (2,2′‐bpy), or 4,4′‐bipyridine (4,4′‐bpy): [Zn2{(2S,3S,4R,5R)‐L}(phen)2(H2O)] ? 2 H2O ( 1 ), [Zn4{(2S,3R,4R,5R)‐L}{(2S,3S,4S,5R)‐L}(phen)2(H2O)2] ( 2 ), [Zn2{(2S,3S,4R,5R)‐L}(H2O)2] ? H2O ( 3 ), [Zn4{(2S,3R,4R,5R)‐L}{(2S,3S,4S,5R)‐L} (2,2′‐bpy)2(H2O)2] ? 2 H2O ( 4 ), [Zn2 {(2S,3S,4R,5R)‐L}(2,2′‐bpy)(H2O)] ( 5 ), [Zn4{(2S,3R,4R,5R)‐L}{(2S,3S,4S,5R)‐L} (4,4′‐bpy)2(H2O)2] ( 6 ), and [Zn2 {(2S,3S,4R,5R)‐L}(4,4′‐bpy)(H2O)] ? 2 H2O ( 7 ). These complexes were obtained by control of the pH values of reaction mixtures, with an initial of pH 2.0 for 1 , 2.5 for 2 , 4 , and 6 , and 4.5 for 3 , 5 , and 7 , respectively. The expected configuration conversion has been successfully realized during the formation of 2 , 4 , and 6 , and the enantiomers of L, (2S,3R,4R,5R)‐L and (2S,3S,4S,5R)‐L, are trapped in them, whereas L ligands in the other four complexes retain the original meso form, which indicates that such a conversion is possibly pH controlled. Acid‐catalyzed enol–keto tautomerism has been introduced to explain the mechanism of this conversion. Complex 1 features a simple 1D metal–L chain that is extended into a 3D supramolecular structure by π–π packing interactions between phen ligands and hydrogen bonds. Complex 2 has 2D racemic layers that consist of centrosymmetric bimetallic units, and a final 3D supramolecular framework is formed by the interlinking of these layers through π–π packing interactions of phen. Complex 3 is a 3D metal–organic framework (MOF) involving meso‐L ligands, which can be regarded as (4,6)‐connected nets with vertex symbol (45.6)(47.68). Complexes 4 and 5 contain 2D racemic layers and (6,3)‐honeycomb layers, respectively, both of which are combined into 3D supramolecular structures through π–π packing interactions of 2,2′‐bpy. The structure of complex 6 is a 2D network formed by 4,4′‐bpy bridging 1D tubes, which consist of metal atoms and enantiomers of L. These layers are connected through hydrogen bonds to give the final 3D porous supramolecular framework of 6 . Complex 7 is a 3D MOF with novel (3,4,5)‐connected (63)(42.64)(42.66.82) topology. The thermal stability of these compounds was also investigated.  相似文献   

11.
Diastereomeric geminate pairs of chiral bis(2‐oxazoline) ruthenium complexes with bipyridyl‐type N‐heteroaromatics, Λ‐ and Δ‐[Ru(L‐ L)2(iPr‐biox)]2+ (iPr‐biox=(4S,4′S)‐4,4′‐diisopropyl‐2,2′‐bis(2‐oxazoline); L‐ L=2,2′‐bipyridyl (bpy) for 1 Λ and 1 Δ, 4,4′‐dimethyl‐2,2′‐bipyridyl (dmbpy) for 2 Λ and 2 Δ, and 1,10‐phenanthroline (phen) for 3 Λ and 3 Δ), were separated as BF4 and PF6 salts and were subjected to the comparative studies of their stereochemical and photochemical characterization. DFT calculations of 1 Λ and 1 Δ electronic configurations for the lowest triplet excited state revealed that their MO‐149 (HOMO) and MO‐150 (lower SOMO) characters are interchanged between them and that the phosphorescence‐emissive states are an admixture of a Ru‐to‐biox charge‐transfer state and an intraligand excited state within the iPr‐biox. Furthermore, photoluminescence properties of the two Λ,Δ‐diastereomeric series are discussed with reference to [Ru(bpy)3]2+.  相似文献   

12.
Three aza‐aromatic base adducts of cadmium(II) furoyltrifluoroacetonate, [Cd(4,4′‐bpy)(ftfa)2]n ( 1 ), [Cd(2,2′‐bpy)(ftfa)2] ( 2 ) and [Cd(dmp)(ftfa)2] ( 3 ) (“4,4′‐bpy”, “2,2′‐bpy”, “dmp” and “ftfa” are the abbreviations of 4,4′‐bipyridine, 2,2′‐bipyridine, 2,9‐dimethyl‐1,10‐phenanthroline and furoyltrifluoroacetonate, respectively) have been synthesized and characterized by elemental analysis and IR, 1H NMR and 13C NMR spectroscopy and studied by thermal as well as X‐ray crystallography. The single‐crystal structure of these complexes shows that the coordination number of the CdII ions are six with two N‐donor atoms from aza‐aromatic base ligands and four O‐donors from two the furoyltrifluoroacetonates. The supramolecular features in these complexes are guided/controlled by weak directional intermolecular interactions.  相似文献   

13.
《化学:亚洲杂志》2017,12(2):254-264
Two new luminescent ruthenium(II) polypyridyl complexes, [Ru(bpy)2(tpt‐phen)]Cl2 ( 1 ; bpy=2,2′‐bipyridine, tpt‐phen=triptycenyl‐1,10‐phenanthroline) and [Ru(phen)2(tpt‐phen)]Cl2 ( 2 ; phen=1,10‐phenanthroline), have been developed as potential nonviral vectors for DNA delivery. Photophysical and electrochemical properties of the complexes have been investigated and corroborated with electronic structure calculations. DNA condensation by these complexes has been investigated by UV/Vis and emission spectroscopy, circular dichroism spectroscopy, atomic force microscopy, dynamic light scattering, confocal microscopy, and electrophoretic mobility studies. These complexes interact with DNA and efficiently condense DNA into globular nanoparticles that are taken up efficiently by HeLa cells. DNA cleavage inability and biocompatibility of complexes have been explored. Both complexes have good gene transfection abilities.  相似文献   

14.
Four CdII metal coordination polymers, namely, [Cd(HL)(H2O)3]n ( 1 ), [Cd(HL)(4,4′‐bpy)]n · nH2O ( 2 ), [Cd3(L)2(2,2′‐bpy)3(H2O)3]n · 2nH2O ( 3 ), and [Cd3(L)2(phen)2(H2O)]n · 2.5nH2O ( 4 ) [H3L = 3‐(3‐carboxyphenoxy) phthalic acid, 4,4′‐bpy = 4,4′‐bipyridine, 2,2′‐bpy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline], were synthesized and structurally characterized by X‐ray diffraction, elemental analysis, and IR spectroscopy. Single‐crystal X‐ray analyses reveal that complexes 1 – 3 have different one‐dimensional (1D) chain structures including zigzag chain, ladder chain, and helical chain, whereas complex 4 shows a 0D trinuclear motif. These low‐dimensional complexes are further extended to 3D supramolecular networks by intermolecular π–π interactions and hydrogen bonds. The ligand H3L exhibits five coordination modes: μ1‐η2‐chelating/μ1‐η2‐chelating, μ1‐η2‐chelating/μ1‐η2‐chelating/μ1‐η2‐chelating, μ1‐η2‐chelating/μ1‐η2‐chelating/μ1‐η1‐bridging, μ1‐η2‐chelating/μ2‐η2‐bridging/μ2‐η11‐bridging, and μ2‐η2‐chelating:η1‐bridging/μ2‐η2‐chelating:η1‐bridging/μ1‐η1‐bridging. Moreover, the photoluminescent properties of complexes 1 – 4 were studied in the solid‐state at room temperature.  相似文献   

15.
To survey the influence of aza‐aromatic co‐ligands on the structure of Cadmium(II) sulfonates, three Cd(II) complexes with mixed‐ligand, [CdII(ANS)2(phen)2] ( 1 ), [CdII(ANS)2(2,2′‐bipy)2] ( 2 ) and [CdII(ANS)2(4,4′‐bipy)2]n ( 3 ) (ANS = 2‐aminonaphthalene‐1‐sulfonate; phen = 1,10‐phenanthroline; 2,2′‐bipy = 2,2′‐bipyridine; 4,4′‐bipy = 4,4′‐bipyridine) were synthesized by hydrothermal methods and structurally characterized by elemental analyses, IR spectra, and single crystal X‐ray diffraction. Of the three complexes, ANS consistently coordinates to Cd2+ ion as a monodentate ligand. While phen in 1 and 2,2′‐bipy in 2 act as N,N‐bidentate chelating ligands, leading to the formation of a discrete mononuclear unit; 4,4′‐bipy in 3 bridges two CdII atoms in bis‐monodentate fashion to produce a 2‐D layered network, suggesting that the conjugate skeleton and the binding site of the co‐ligands have a moderate effect on molecular structure, crystal stacking pattern, and intramolecular weak interactions. In addition, the three complexes exhibit similar luminescent emissions originate from the transitions between the energy levels of sulfonate anions.  相似文献   

16.
A novel ligand 3‐(1H‐imidazo[4,5‐f][1,10]phenanthrolin‐2‐yl)‐4H‐1‐benzopyran‐4‐one (ipbp) and its ruthenium(II) complexes [Ru(bpy)2(ipbp)]2+ ( 1 ) and [Ru(ipbp)(phen)2]2+ ( 2 ) (bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis and mass, 1H‐NMR, and electronic‐absorption spectroscopy. The electrochemical behavior of the complexes was studied by cyclic voltammetry. The DNA‐binding behavior of the complexes was investigated by spectroscopic methods and viscosity measurements. The results indicate that complexes 1 and 2 bind with calf‐thymus DNA in an intercalative mode. In addition, 1 and 2 promote cleavage of plasmid pBR 322 DNA from the supercoil form I to the open circular form II upon irradiation.  相似文献   

17.
Diorganotin (IV) complexes SnR2X2 (R = Me, Ph; X = Cl, NCS) form a series of versatile complexes when react with bidentate substituted pyridyl ligands. The reaction of dimethyltin dichloride with 5,5′‐dimethyl‐2,2′‐bipyridine (5,5′‐Me2bpy) resulted in the formation of [SnMe2Cl2(5,5′‐Me2bpy)] ( 1 ). Moreover, the reaction of SnMe2(NSC)2 with 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine (bu2bpy), 1,10‐phenanthroline (phen) and 4,7‐diphenyl‐1,10‐phenanthroline (bphen) affords the hexa‐coordinated complexes [SnMe2(NCS)2(bu2bpy)] ( 2 ), [SnMe2(NCS)2(phen)] ( 3 ) and [SnMe2(NCS)2(bphen)] ( 4 ), respectively. The resulting complexes have been characterized using elemental analysis, IR, multinuclear NMR (1H, 13C, 119Sn) and DEPT‐135° NMR spectroscopy. On the other hand, the reaction of diphenyltin dichloride with 2,2′‐biquinoline (biq) and 4,7‐phenantroline (4,7‐phen) led to the formation of polymeric complexes of [SnPh2Cl2(4,7‐phen)]n ( 5 ) and [SnPh2Cl2(biq)]n ( 6 ). The NMR spectra, however, reveal the ligand lability in solution and suggest a coordination number of 5 . The X‐ray crystal structures of complexes [SnMe2Cl2(5,5′‐Me2bpy)] ( 1 ), [SnMe2(NCS)2(bu2bpy)] ( 2 ) and [SnMe2(NCS)2(bphen)] ( 4 ) have been determined which reveal that the geometry around the tin atom is distorted octahedral with trans‐[SnMe2] configuration. Interestingly, the crystal structure of (H2biq)2[SnPh2Cl4]?2CHCl3 ( 7 ) was characterized by X‐ray crystallography from a chloroform solution of [SnPh2Cl2(biq)]n ( 6 ) indicating the formation of doubly protonated [H2biq]+ and [Ph2SnCl4]2? which are stabilized by a network of hydrogen bonds with a feature of trans‐[SnPh2]. The 3D Hirshfeld surface analysis and 2D fingerprint maps were used for quantitative mapping out of the intermolecular interactions for 1 , 2 , 4 and 7 which show the presence of π‐π and hydrogen bonding interactions which are associated between donor and acceptor atoms (N, S, Cl) in the solid state.  相似文献   

18.
The synthesis of tri-heteroleptic complex of Ru(II) with diimine ligands is describe. Ten compounds [Ru(R2bpy) (biq) (L)][PF6]2 (R = H, CH3); L = 2,2′-bipyridine (bpy), 4,4′-dimethyl-2,2′-bipyridine (Me2bpy), 2,2′-bipyrimidine (bpm), 2,2′-biisoquinoline (biiq), 1,10-phenanthroline (phen), dipyrido[3,2-c:2′,3′-e]pyridazine (taphen), 2,2′-biquinoline (biq), 6,7-dihydrodipyrido[2,3-b:3,2-j][1,10]-phenanthroline (dinapy), 2-(2[pyridyl)quinoline (pq), 1-(2-pyrimidyl)pyrazole] (pzpm), 2,2′-biimidazole (H2biim) are characterized by elemental analysis, electronic and 1H-NMR spectroscopy. The relative photosustitution rates of biq in MeCN are given at three temperatures.  相似文献   

19.
A new 3D MnII metal‐organic framework compound {Mn(phen)(dcbp)}n (H2dcbp = 4,4‐dicarboxy‐2,2′‐bipyridine, phen = 1,10‐phenanthroline) was isolated under hydrothermal conditions and structurally characterized. In the compound, the dcbp ligand is deprotonated to give a neutral species (metal:ligand with 1:1 stoichiometry). Along the c axis, the neighboring MnII ions are linked by two carboxylate bridges in µ2‐coordinating mode to generate a 1D zigzag chain, and these chains are interlinked by dicarboxylate groups of long dcbp ligands to generate a 3D (4,4)‐connected structure with the (42.84) net topology. IR and UV/Vis spectroscopy and variable temperature magnetic susceptibility measurements were made, which indicated weak antiferromagnetic interactions between the MnII ions of the compound.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号