首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two rare earth metal‐organic framework compounds [Ybsip(H2O)5] · 3H2O ( 1 ) and [Dysip(H2O)4] ( 2 ) (NaH2sip: 5‐sulfoisophthalic acid sodium salt) were synthesized hydrothermally, and characterized by single‐crystal X‐ray diffraction, elemental analysis, and FT‐IR spectroscopy. In complex 1 , each YbIII atom is nine‐coordinate with a distorted monocapped tetragonal prismatic arrangement. Two carboxylate groups of each sip3– molecule adopt the same μ1‐η11 chelating coordination model connecting two YbIII atoms. The oxygen atoms of the sulfonate group do not participate in coordination with YbIII. The whole sip3– molecule acts as a μ2 bridge to form an one‐dimensional (1D) chain structure. The 1D chains are linked by hydrogen bonding to generate two‐dimensional layers, and are further combined together to form a three‐dimensional structure. In complex 2 , the DyIII atom is nine‐coordinate with a distorted monocapped tetragonal antiprismatic arrangement. In each sip3– anion, two carboxylate groups take the same μ1‐η11 chelating coordination mode, only an oxygen atom of sulfonate group bond to DyIII ion. The whole ligand sip3– acts as a μ3 bridge linking three different DyIII ions to generate a wave‐like two‐dimensional network with (6,3) topological structure. The two‐dimensional networks are further linked by O–H ··· O hydrogen bonds to form a three‐dimensional structure. The thermal and luminescent properties of both complexes are investigated.  相似文献   

2.
Herein, we report the preparation of zeolite NIR luminescence materials with a remarkable increase of luminescence intensity by attaching stopper molecule (an imidazolium salt) to the channel entrances of zeolite L loading with NIR lanthanide (Er3+ or Nd3+) β‐diketonate complexes. This results from the formation of Ln3+β‐diketonate complexes (Ln=Er or Nd) with high coordination numbers through the decreasing of the proton strength in the zeolite channels. The obtained materials were characterized with SEM and photoluminescence spectroscopy. We believe that this hybrid material will be an appealing candidate for the applications of optical fiber, telecommunications and bio‐imaging.  相似文献   

3.
Two heterobimetallic Zn‐Nd phenylene‐bridged Schiff‐base ligands complexes [ZnNd L1 (Py)(NO3)3] ( 1 ) and [Zn L2 Nd(Py)(NO3)3]·MeCN ( 2 ) (Py = pyridine, H2L1 = N,N′‐bis‐ (3‐methoxy‐salicylidene)phenylene‐1,2‐diamine, H2L2 = N,N′‐bis‐5‐bromo‐3‐methoxy‐salicylidene)phenylene‐1,2‐diamine) were obtained. Both 1 and 2 were structurally characterized by X‐ray crystallography, and their near‐infrared (NIR) luminescent properties were determined. For the two complexes, the occupation of pyridine at the axial position of 3d Zn2+ ions could effectively prevent luminescent quenching arising from OH‐, NH‐ or CH oscillators of the solvates around the 4f Nd3+ ions, and the heavy‐atom (Br) effect of the Schiff‐base ligands on their NIR luminescent properties is also discussed.  相似文献   

4.
本文设计了一个新型含苯-甲基-苯骨架的席夫碱配体,构筑了两个具有矩形结构的锌-稀土纳米簇[Ln2Zn2L2(OAc)6] (Ln = Yb (1)和Er (2))。该席夫碱配体以“伸展型”配位模式与稀土离子进行配位,使这些锌-稀土纳米簇表现出较大的分子尺寸结构(0.7 nm × 1.1 nm × 2.2 nm)。荧光性质研究表明,由Zn/L组成的发色基团能有效敏化1和2中Yb3+和Er3+离子的近红外发光。通过对荧光量子产率及寿命进行分析发现,Zn/L对Yb3+离子的传能效率要高于Er3+离子。  相似文献   

5.
Reaction of DyCl3 with two equivalents of NaN(SiMe3)2 in THF yielded {Dy(μ‐Cl)[N(SiMe3)2]2(THF)}2 ( 1 ). X‐ray crystal structure analysis revealed that 1 is a centrosymmetric dimer with asymmetrically bridging chloride ligands. The metal coordination arrangement can be best described as distorted trigonal bipyramid. The bond lengths of Ln–Cl and Ln–N showed a decreasing trend with the contraction of the size of Ln3+. Treatment of N,N‐bis(pyrrolyl‐α‐methyl)‐N‐methylamine (H2dpma) with 1 and known compound {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2, respectively, led to the formations of [Dy(μ‐Cl)(dpma)(THF)2]2 ( 2 ) and {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2 ( 3 ). Compounds 2 and 3 were fully characterized by single‐crystal X‐ray crystallography, elemental analysis, and 1H NMR spectroscopy. Structure determination indicated that 2 and 3 exhibit as centrosymmetric dimers with asymmetrically bridging chloride ligands. One pot reactions involving LnCl3 (Ln = Dy and Yb), LiN(SiMe3)2, and H2dpma were explored and desired products 2 and 3 were not yielded, which indicated that 1 and {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2 are the demanding precursors to synthesize Dysprosium and Ytterbium complexes supported by dpma2– ligand. Compounds 2 and 3 are the first reported lanthanide complexes chelated by dpma2– ligand.  相似文献   

6.
The combination of physical properties sensitive to molecular chirality in a single system allows the observation of fascinating phenomena such as magneto-chiral dichroism (MChD) and circularly polarized luminescence (CPL) having potential applications for optical data readout and display technology. Homochiral monodimensional coordination polymers of YbIII were designed from a 2,15-bis-ethynyl-hexahelicenic scaffold decorated with two terminal 4-pyridyl units. Thanks to the coordination of the chiral organic chromophore to Yb(hfac)3 units (hfac=1,1,1,5,5,5-hexafluoroacetylaconate), efficient NIR-CPL activity is observed. Moreover, the specific crystal field around the YbIII induces a strong magnetic anisotropy which leads to a single-molecule magnet (SMM) behaviour and a remarkable room temperature MChD. The MChD-structural correlation is supported by computational investigations.  相似文献   

7.
通过配体1,2-环己二胺缩邻香兰素(H2L)和不同的镱盐反应,合成了4个镱稀土配合物[Yb(H2L)2](ClO43·2CH3OH·H2O(1),[Yb4(L)4(NO32(H2O)2](PF62·4CH3CN(2),[Yb4(L)4(H2O)2Cl2](PF62·2CH2Cl2·2H2O(3)和[Yb4(L)4(NO32(H2O)2][Yb(NO33(H2O)2(CH3OH)](NO32·4CH2Cl2·6CH3OH(4)。X射线单晶衍射分析表明配合物1为零维的单核结构,配合物2~4均为四核结构。研究了4个配合物的近红外发光性能。  相似文献   

8.
通过配体1,2-环己二胺缩邻香兰素(H2L)和不同的镱盐反应,合成了4个镱稀土配合物[Yb(H2L)2](ClO43·2CH3OH·H2O(1),[Yb4(L)4(NO32(H2O)2](PF62·4CH3CN(2),[Yb4(L)4(H2O)2Cl2](PF62·2CH2Cl2·2H2O(3)和[Yb4(L)4(NO32(H2O)2][Yb(NO33(H2O)2(CH3OH)](NO32 ·4CH2Cl2·6CH3OH(4)。X射线单晶衍射分析表明配合物1为零维的单核结构,配合物2~4均为四核结构。研究了4个配合物的近红外发光性能。  相似文献   

9.
The crystal structure and the electronic properties of YbGa2 realising a CaIn2 type atomic arrangement were characterised at ambient conditions using single crystal X‐ray diffraction data and magnetic susceptibility measurements at ambient pressure. Pressure‐induced changes of structural and electronic properties of YbGa2 were measured by means of angle‐dispersive X‐ray powder diffraction and XANES at the Yb LIII threshold. At pressures above 22(2) GPa, YbGa2 undergoes a structural phase transition into a high pressure modification with a UHg2 type crystal structure. Parallel to the pressure‐induced structural alterations, ytterbium in YbGa2 undergoes an increase of the oxidation state from +2 at ambient conditions to +3 in the high‐pressure phase. Quantum chemical calculations of the Electron‐Localisation‐Function confirm that the phase transition is associated with a conversion of the three‐dimensional gallium network of the low‐pressure crystal structure into two‐dimensional gallium layers in the high‐pressure modification.  相似文献   

10.
The coordination polymers (CPs), [Ni(L)(H2O)4]n ( 1 ), [Co(HL)2(H2O)2]n ( 2 ), {[Cu(L)(H2O)3] · H2O}n ( 3 ), [Mn(L)(H2O)2]n ( 4 ), [Cd(L)(H2O)2]n ( 5 ), and {[Zn2(L)2] · H2O}n ( 6 ), were solvothermally synthesized by employing the imidazol‐carboxyl bifunctional ligand 4‐(1H‐imidazol‐1‐yl) phthalic acid (H2L). Single‐crystal X‐ray diffraction indicated that the L2–/HL ligands display various coordination modes with different metal ions in 1 – 6 . Complexes 1 and 2 show one‐dimensional (1D) chain structures, whereas complexes 3 – 6 show 2D layered structures. The magnetic properties of these complexes were investigated. Complexes 1 and 3 indicate weak ferromagnetic interactions, whereas complexes 2 and 4 demonstrate antiferromagnetic interactions. In addition, luminescence properties of 5 and 6 were measured and studied in detail.  相似文献   

11.
Ytterbium complexes supported by a linked bis(β‐ketoiminato) ligand, N,N′‐ethylenebis(benzoylacetoimine) (H2L), were synthesized and their catalytic behavior was explored. The reaction of YbCl3 with 1 equiv. of LLi2 afforded the mononuclear ytterbium chloride LYbCl(THF)2 ( 1 ) in high yield. Complex 1 can be used as starting material to prepare β‐ketoiminate‐ytterbium derivatives. Treatment of complex 1 with NaN(SiMe3)2 produced the dimeric ytterbium amide {LYb[N(SiMe3)2]}2 ( 2 ), while the similar reaction of complex 1 with NaOAr (ArO = 2, 6‐tBu‐4‐MeC6H2O) led to the mononuclear ytterbium aryloxide LYbOAr(THF) ( 3 ). The three complexes were well detected by elemental analysis and single‐crystal X‐ray analysis. It was found that complexes 2 and 3 can initiate the ring‐opening polymerization of ?‐caprolactone with moderate activity.  相似文献   

12.
Engineering the surface of the metal clusters with the core structure maintained and tuning their luminescence in a wide range is still a challenge in the nanomaterial research. We modified six mono‐pyridyl ligands with different electronic effects (conjugation effect or induction effect) on a superatomic silver cluster [Ag14(C2B10H10S2)6(CH3CN)8] (denoted as Ag14) through in situ site‐specific surface engineering, and obtained the corresponding clusters [Ag14(C2B10H10S2)6(CH3CN)6(L1/L2)2] (denoted as NC‐1, 2, L1/L2 = 4‐acetylpyridine/ 4‐carboxypyridine) and [Ag14(C2B10H10S2)6(L3/L4/L5/L6)8] (denoted as NC‐3, 4, 5, 6, L3/L4/L5/L6 = 4‐phenylpyridine/4‐(1‐naphthyl)pyridine/9‐(4‐pyridine)anthracene/9‐(4‐pyridine)pyrene). Through the modification of the Ag14 cluster, a wide‐range luminescence from blue to red was realized. This work might provide a practical guide for improving the emission performance of metal clusters via surface engineering.  相似文献   

13.
The synthesis, characterization, and luminescence properties of (Bu4N)2[Mo6I8(NCS)6] are reported. Orange crystals of (Bu4N)2[Mo6I8(NCS)6] were crystallized from acetone solution and used for X‐ray single‐crystal structure determination and refinement, yielding a structure with a centrosymmetric [Mo6I8(NCS)6]2– ion. Photoluminescence studies on the crystalline solid revealed a broad excitation in the UV/Vis region and an emission around 690 nm. The red emission intensity decreases with increasing partial pressure of atmospheric molecular O2.  相似文献   

14.
A series of free ligands, H2 L 1 , H2 L 2 , H2 L 3 , and H2 L 4 , designed for the coordination and sensitization of near‐infrared(NIR)‐emitting Nd3+ were synthesized by modifying the salophen Schiff base with different numbers and locations of Br‐substituents. The nature of the Nd3+ complexes in solution was determined to be [ML2]? by spectrophotometric titrations as an indication that the different substituents do not affect significantly the nature of the formed species. The structures were determined in the solid phase from X‐ray diffraction experiments. The stoichiometries and structures in the solid state are different from those observed in solution. We established that the structures in the solid state can be partially controlled by the crystallization conditions. The ligands L 1 – L 4 have the ability to sensitize Nd3+ through intramolecular energy transfer from the ligand to the metal ion. We quantified that the numbers and locations of Br‐substituents control the emitted luminescence intensity of the complex by the heavy‐atom effect.  相似文献   

15.
Two dinuclear lanthanide complexes with pentadentate ligand 3‐[bis(pyridine‐2‐ylmethyl)amino]propane‐1,2‐diol (H2L), formulated as [Ln2(HL)2(NO3)2(H2O)2] · 1.5NO3 · 0.5I [Ln = Tb ( ZTU‐1 ) and Eu ( ZTU‐2 ); ZTU = Zhaotong University] were synthesized and structurally characterized. ZTU‐1 and ZTU‐2 are isomorphous and feature a butterfly‐like arrangement. The fluorescence properties of ZTU‐1 and ZTU‐2 are investigated and slow magnetic relaxation behavior is observed in ZTU‐1 .  相似文献   

16.
Here we describe an anion excluding ion‐permeable membrane, which we evaluate on an O2‐electroreducing cathode poised at a strongly oxidizing potential, near the reversible potential of the O2/H2O half cell. The bioelectrocatalyst of the O2 cathode consists of the cross‐linked electrostatic adduct of a polycationic redox hydrogel and bilirubin oxidase (BOD), a polyanion at neutral at pH 7.3. If an uncured Nafion dispersion is applied on this bioelectrocatalyst, the polyanionic Nafion displaces the BOD in the electrostatic adduct, de‐wiring the BOD. We show here that insertion of a polycationic poly(acrylamide‐co‐vinylimidazole) (PAA‐PVI) between the bioelectrocatalyst and the Nafion prevents the dewiring of BOD. The resulting bi‐layer membrane effectively excludes the urate, thiocyanate and NADH anions.  相似文献   

17.
The red colour of the novel organonickel complex [(dppz)Ni(Mes)Br] (dppz = dipyrido[3,2‐a:2′,3′‐c]phenazine, Mes = 2,4,6‐trimethylphenyl) originates from long‐wavelength MLCT/L′LCT charge transfer bands. However, luminescence in dilute solution comes presumably from the 3π‐π* (phenazine) excited state. The red‐shifted emission exhibited in concentrated solutions is assigned to dimers. In the solid state emission is quenched. The crystal structure reveals two different types of π‐π stacking along the crystallographic a axis.  相似文献   

18.
Reactions of Cd(NO3)2 · 4H2O with 2‐quinolinecarboxylic acid (H‐QLC) in the presence of 1,4‐benzenedicarboxylic acid (H2‐BDC) or 1,3,5‐benzenetricarboxylic acid (H‐BTC) in DMF/H2O solvent afforded two compounds, namely, [Cd(QLC)(BDC)1/2(H2O)]n ( 1 ) and [Cd(QLC)(BTC)1/3]n ( 2 ). Both compounds are two‐dimensional (2D) frameworks but feature different cadmium‐carboxylate clusters as a result of the presence of the polycarboxylate ligands with different geometries and coordination preference. The dinuclear Cd2(QLC)2 units in 1 are bridged by the pairs of bridging water ligands to give a one‐dimensional (1D) chain, which is further linked by the second ligand of BDC2– to form a 2D structure. Compound 2 is constructed from unique hexanuclear macrometallacyclic Cd6(QLC)6 clusters, which are linked by the surrounding BTC3– ligands to generate a 2D structure. Photoluminescence studies showed both compounds exhibit ligand‐centered luminescent emissions with emission maxima at 405 and 401 nm, respectively.  相似文献   

19.
A series of lanthanide metal complexes [Ln = Sm ( 1 and 5 ), Eu ( 2 and 6 ), Tb ( 3 and 7 ), Er ( 4 and 8 )] were synthesized with imidazole‐containing β‐diketone ligands. Complexes 1 – 8 were characterized by IR, elemental analysis, powder XRD, and TG measurements. The photoluminescence properties and the probable mechanism of the Sm, Eu, and Tb complexes were studied. The Eu complex generated strong red light in response to excitation with purple light (380–420 nm). Their fluorescence lifetime of 2 and 6 were 378 and 267 μs, respectively. The measurement and analysis of the thermal properties showed that these were thermal stable. Therefore, it can be applied to LED fluorescent powder.  相似文献   

20.
Reactions of the polymer {AuIC2Ph}n with polyphosphine ligands [1,4‐bis(2‐diphenylphosphino‐1H‐imidazol‐1‐yl)‐benzene (dpib), 1,3,5‐tris(4‐diphenylphosphinophenyl)benzene (tppb), 2,2′‐bis(diphenylphosphanyl)‐4,4′‐bipyridine (dpbp), and 3,6‐bis(diphenylphosphanyl)pyridazine (dppz)] afforded four gold(I) alkynyl‐polyphosphine complexes [{AuC2Ph}2(μ‐dpib)] ( 1 ), [{AuC2Ph}33‐tppb)] ( 2 ), [{AuC2Ph}2(μ‐dpbp)] ( 3 ), and [{AuC2Ph}2(μ‐dppz)] ( 4 ) in nearly quantitative yield. The compounds obtained were characterized using elemental analysis, ESI‐MS, X‐ray crystallography, and polynuclear NMR spectroscopy. Intermolecular aurophilic interaction together with π–π and σ–π stacking build up the supramolecular 3D network of complex 3 , whereas none of these intermolecular bondings were found in the crystal structures of compounds 1 , 2 , and 4 . Complexes 1 – 4 are luminescent both in solution (CH2Cl2) and in solid state under laser irradiation (λex = 308 nm). In solution, the diphosphine complexes 1 – 4 display dual emission corresponding to ligand centered transitions (λem = 360–375 nm) along with weaker contribution from MLCT excited states at ca. 490 nm. The long wavelength component of the emission plays a dominant role in the solid state luminescence spectra of complexes 1 , 3 , and 4 (460, 544, 520 nm, respectively) whereas the triphosphine complex 2 shows dual luminescence (372 and 520 nm) with considerable contribution from ligand centered excited state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号