首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lanthanum Dodecahydro‐closo‐Dodecaborate Hydrate [La(H2O)9]2[B12H12]3·15 H2O and its Oxonium‐Chloride Derivative [La(H2O)9](H3O)Cl2[B12H12]·H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic La2O3 and after isothermic evaporation colourless, face‐rich single crystals of a water‐rich lanthanum(III) dodecahydro‐closo‐dodecaborate hydrate [La(H2O)9]2[B12H12]3·15 H2O are isolated. The compound crystallizes in the trigonal system with the centrosymmetric space group (a = 1189.95(2), c = 7313.27(9) pm, c/a = 6.146; Z = 6; measuring temperature: 100 K). The crystal structure of [La(H2O)9]2[B12H12]3·15 H2O can be characterized by two of each other independent, one into another posed motives of lattice components. The [B12H12]2− anions (d(B–B) = 177–179 pm; d(B–H) = 105–116 pm) are arranged according to the samarium structure, while the La3+ cations are arranged according to the copper structure. The lanthanum cations are coordinated in first sphere by nine oxygen atoms from water molecules in form of a threecapped trigonal prism (d(La–O) = 251–262 pm). A coordinative influence of the [B12H12]2− anions on La3+ has not been determined. Since “zeolitic” water of hydratation is also present, obviously the classical H–Oδ–···H–O‐hydrogen bonds play a significant role in the stabilization of the crystal structure. During the conversion of an aqueous solution of (H3O)2[B12H12] with lanthanum trichloride an anion‐mixed salt with the composition [La(H2O)9](H3O)Cl2[B12H12]·H2O is obtained. The compound crystallizes in the hexagonal system with the non‐centrosymmetric space group (a = 808.84(3), c = 2064.51(8) pm, c/a = 2.552; Z = 2; measuring temperature: 293 K). The crystal structure can be characterized as a layer‐like structure, in which [B12H12]2− anions and H3O+ cations alternate with layers of [La(H2O)9]3+ cations (d(La–O) = 252–260 pm) and Cl anions along [001]. The [B12H12]2− (d(B–B) = 176–179 pm; d(B–H) = 104–113 pm) and Cl anions exhibit no coordinative influence on La3+. Hydrogen bonds are formed between the H3O+ cations and [B12H12]2− anions, also between the water molecules of [La(H2O)9]3+ and Cl anions, which contribute to the stabilization of the crystal structure.  相似文献   

2.
The room temperature reaction of Na4Sn2S6 · 5H2O with CoCl2 · 6H2O and 2-(aminomethyl)pyridine (2-AMP) or trans-1,2-diamino-cyclohexane (DACH) leads to crystallization of two compounds with the compositions [Co(2-(aminomethyl)pyridine)3]2 Sn2S6 · 10H2O ( 1 ) and [Co(trans-1,2-diaminocyclohexane)3]2Sn2S6 · 8H2O ( 2 ). In both compounds [Sn2S6]4– anions are present that are charge balanced each by two Co2+ centered complexes. Each of the two CoII cations are sixfold coordinated by six N atoms of three 2-AMP or DACH ligands within slightly distorted octahedra. In compound 1 , the two complexes are linked by one [Sn2S6]4– anion via strong N–H ··· S hydrogen bonds into centrosymmetric charge neutral trimeric units, that are further linked by weak C–H ··· S and N–H ··· S hydrogen bonds into chains that are directed along the a axis. These chains are further joined by N–H ··· O and O–H ··· O hydrogen bonds into a 3D network, with the H2O molecules forming chains along the b axis. The crystal structure of 2 is similar to that of 1 featuring trimeric units which are also linked into chains. Between the chains water molecules are embedded that link the chains into a 3D network. Upon heating 2 in a thermobalance the water and ligand molecules are removed in discrete steps, indicating that compounds with more condensed thiostannate networks will form.  相似文献   

3.
New selenidoantimonats [Ni(dien)2]2Sb2Se6 ( 1 ), [Mn(dien)2]2(SbSe4)(Cl) ( 2 ), [Co(dien)2]2(SbSe4)(Br) ( 3 ), and [Co(dien)2]3(SbSe4)2 ( 4 ) (dien = diethylenetriamine) were solvothermally synthesized in dien solvent at 180 °C. The crystal structure of 1 consists of two octahedral [Ni(dien)2]2+ cations and a mixed‐valent [Sb2Se6]4? anion. The isolated [Sb2Se6]4? anion is formed by a SbIIISe3 trigonal pyramid and a SbVSe4 tetrahedron sharing a common corner. 2 and 3 are composed of octahedral [M(dien)2]2+ cations, tetrahedral [SbSe4]3? anions and halide ions forming an extended network through hydrogen‐bonding interactions. In 4 the [Co(1)(dien)2]2+, [Co(2)(dien)2]2+ and [SbSe4]3? ions form layered structures via N–H···Se hydrogen bonds. The [Co(3)(dien)2]2+ ion is located between the layers, and interacts with the layers by N–H···Se bonds. The synthesis and solid state structural studies on the title compounds show that the higher reaction temperature is helpful for the formation of selenidoantimonate(V) compounds in the synthesis of selenidoantimonate from the M2+/Sb/Se/dien system. 1 – 4 start to decompose at temperature about 210 °C in N2 atmosphere. They lose dien ligands at a wide temperature range of 210–450 °C with multisteps for 1 – 3 and a single step for 4 .  相似文献   

4.
The novel thioantimonate(III) [Ni(dien)2]9Sb22S42 · 0.5H2O was synthesised under solvothermal conditions by reacting elemental Ni, Sb and S in an aqueous solution of diethylenetriamine (dien) (80%). The compound crystallises in the triclinic space group P1¯, a = 8.997(2) Å, b = 15.293(3) Å, c = 34.434(7) Å, α = 85.51(3)°, β = 84.16(3)°, γ = 83.54(3)°, V = 4672.7 (16) Å3, Z = 1. The layered [Sb22S4218—] anion in [Ni(dien)2]9Sb22S42 · 0.5H2O is composed of nine SbS3 trigonal pyramids, one SbS4 and one SbS5 unit. The interconnection of these units by sharing common S atoms yields Sb‐S heterorings of different sizes. Besides the smaller Sb2S2 and Sb3S3 rings a very large Sb30S30 heteroring is observed. The structure directing effect of the [Ni(dien)2]2+ cations is obvious as they are located above and below the pores of the anion. The nine [Ni(dien)2]2+ cations exhibit different conformations. All Ni2+ cations are in an octahedral environment of six N atoms of two dien ligands. The anions and cations are stacked perpendicular to [100] in an alternating fashion.  相似文献   

5.
The three new thioantimonates(V) [Ni(chxn)3]3(SbS4)2·4H2O ( I ), [Co(chxn)3]3(SbS4)2·4H2O ( II ) (chxn is trans‐1,2‐diaminocyclohexane) and [Co(dien)2][Co(tren)SbS4]2·4H2O ( III ) (dien is diethylenetriamine and tren is tris(2‐aminoethyl)amine) were synthesized under solvothermal conditions. Compounds I and II are isostructural crystallizing in space group C2/c. The structures are composed of isolated [M(chxn)3]2+ complexes (M = Ni, Co), [SbS4]3? anions and crystal water molecules. Short S···N/S···O/O···O separations indicate hydrogen bonding interactions between the different constituents. Compound III crystallizes in space group and is composed of [Co(dien)2]2+ and [Co(tren)SbS4]? anions and crystal water molecules. In the cationic complex the Co2+ ion is in an octahedral environment of two dien ligands whereas in [Co(tren)SbS4]? the Co2+ ion is in a trigonal bipyramidal coordination of four N atoms of tren and one S atom of the [SbS4]3? anion, i.e., two different coordination polyhedra around Co2+ coexist in this compound. Like in the former compounds an extended hydrogen bonding network connects the complexes and the water molecules into a three‐dimensional network.  相似文献   

6.
The hexachalcogenodistannates K6[SnIII2Se6] or Li4[SnIV2Te6]·8en were recently reported to simultaneously act as mild oxidants and chalcogenide sources in reactions with CoCl2/LiCp* (Cp* = pentamethylcyclopentadienide) while the Sn—E (E = Se, Te) fragment is not kept in the products, e.g. [(Cp*Co)3(μ3‐Se)2], [(Cp*Co)3(μ3‐Se)2][Cl2Co(μ2‐Cl)2Li(thf)2] or [(Cp*Co)4(μ3‐Te)4]. In search of related reagents with possibly different reaction behavior, we isolated and crystallographically characterized isotypic compounds [enH]4[SnIV2Se6]�en ( 1 ), and [enH]4[SnIV2Te6en ( 2 ) (en = 1, 2‐diaminoethane), that result from an uncommon disproportion/re‐arrangement reaction: distannate(III) K6[Sn2E6] (E = Se, Te) was reacted with en·2HCl to yield 1 or 2 under disproportion of SnIII to SnII and SnIV. Another pathway was necessary to synthesize the respective but solvent‐free thiostannate [enH]4 [SnIV2S6] ( 3 ), since the phase “K6[Sn2S6]” is unknown. This second method started out from SnCl4·2THF and S(SiMe3)2 in en solution. However, using E(SiMe3)2 (E = Se, Te) instead of S(SiMe3)2, 1 and 2 are also obtained this way. 1—3 are the first chalcogenostannates that exhibit exclusively [enH]+ counterions. The compounds were characterized by means of X‐ray crystallography and NMR spectroscopy. They seem to be suitable for reactions towards group 8‐10 metal complexes. Preliminary experiments indicate that the binary anions 1 — 3 coordinated by 1‐aminoethylammonium ions react more slowly compared to the anionic phases tested until now.  相似文献   

7.
The compound [K([2.2.2]crypt)]Cs7[Sn9]2(en)3 ( 1 ) was synthesized from an alloy of formal composition KCs2Sn9 by dissolving in ethylenediamine (en) followed by the addition of [2.2.2]crypt and toluene. 1 crystallizes in the orthorhombic space group Pcca with a = 45.38(2), b = 9.092(4), c = 18.459(8) Å, and Z = 4. The structure consists of Cs7[Sn9]2 layers which contain [Sn9]4– anions and Cs+ cations. The layers are separated by [K([2.2.2]crypt)]+ units. In the intermetallic slab (Cs7[Sn9]2) compares the arrangement of pairs of symmetry‐related [Sn9]4– anions with the dimer ([Ge9]–[Ge9])6– in [K([2.2.2]crypt)]2Cs4([Ge9]–[Ge9]), in which the clusters are linked by a cluster‐exo bond. The shortest distance between atoms of such two clusters in 1 is 4.762 Å, e. g. there are no exo Sn‐Sn bonds. The [Sn9]4– anion has almost perfect C4v‐symmetry.  相似文献   

8.
Synthesis and Crystal Structure of [Na3(H2O)6,5(EtOH)][PhSnS3] · 3 EtOH Ph4Sn4S6 reacts with Na2S · 5 H2O in aqueous acetone to form Na3[PhSnS3]. Recrystallization of the crude product from ethanol leads to colourless needles of [Na3(H2O)6,5(EtOH)][PhSnS3] · 3 EtOH 1 . The crystal structure of 1 was determined by X-ray diffraction. 1 consists of [PhSnS3]3– anions and sodium cations which are coordinated by water, ethanol and sulfur atoms of the [PhSnS3]3– anions. The [PhSnS3]3– anion contains a tin atom which is coordinated nearly tetrahedrally by a phenyl group and three sulfur atoms. The Sn–S bonds are 237,4(2)–238,4(2) pm.  相似文献   

9.
The characteristic feature of the structure of the title compound, dipotassium bis(sulfito‐κS)mercurate(II) 2.25‐hydrate, is a layered arrangement parallel to (001) where each of the two independent [Hg(SO3)2]2− anions are grouped into centrosymmetric pairs and are surrounded by two K+ cations to give the overall layer composition {K2[Hg(SO3)2]2}2−. The remaining cations and the uncoordinated water molecules are situated between these layers. Within the [Hg(SO3)2]2− anions, the central Hg atoms are twofold coordinated by S atoms, with a mean Hg—S bond length of 2.384 (2) Å. The anions are slightly bent [174.26 (3) and 176.99 (3)°] due to intermolecular O...Hg interactions greater than 2.8 Å. All coordination polyhedra around the K+ cations are considerably distorted, with coordination numbers ranging from six to nine. Although the H atoms of the five water molecules (one with symmetry 2) could not be located, O...O separations between 2.80 and 2.95 Å suggest a system of medium to weak O—H...O hydrogen bonds which help to consolidate the structural set‐up. Differences and similarities between the bis(sulfito‐κS)mercurate(II) anions in the title compound and those in the related salts (NH4)2[Hg(SO3)2] and Na2[Hg(SO3)2]·H2O are discussed.  相似文献   

10.
Reaction of Tin Chlorides with Polysulfides. Crystal Structures of (PPh4)2[SnCl2(S6)2], (PPh4)2[Sn4Cl4S5(S3)O], and (PPh4)2[SnCl6] · S8 · 2CH3CN . The reaction of PPh4[SnCl3] with Na2S4 in acetonitrile in the presence of small amounts of water yields (PPh4)2[Sn4Cl4S5(S3)O] and minor amounts of (PPh4)2[SnCl2(S6)2], PPh4Cl · 2S8 and (PPh4)2[SnCl6]. SnCl4 is partially reduced by (PPh4)2Sx, PPh4[SnCl3] and (PPh4)2[SnCl6] · S8 · 2CH3CN being produced. According to the X-ray crystal structure determination the [Sn4Cl4S5(S3)O]2?-ion consists of an O atom that is coordinated by four Sn atoms which in turn are liked with one another by five single S atoms and one S3 group. In the [SnCl2(S6)2]2?-ion the Sn atom is octahedrally coordinated by two Cl atoms in trans arrangement and by two chelating S6 groups. Octahedral [SnCl6]2? ions and S8 molecules in the crown conformation are present in (PPh4)4[SnCl6] · S8 · 2CH3CN.  相似文献   

11.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

12.
Using the solvothermal approach five new tin‐sulfur compounds were synthesized. All compounds exhibit a direct covalent bond between the thiostannate unit and the charge compensating transition metal TM2+ ion, leading to the formation of discrete neutral molecules, chains or layered structures. In the structures, the [Sn2S6]4– anion is connected to the TM2+ cations in three different ways: (a) only two and opposite terminal S atoms are involved in bonding; (b) the four terminal S atoms connect two different complexes, and (c) the four terminal S atoms link four complexes. The compounds are: {[Ni(phen)2]2[Sn2S6]} · biph ( 1 ), {[Ni(phen)2]2[Sn2S6]} · phen · H2O ( 2 ), {[Fe(1,2‐dach)2][Sn2S6]}n · 2n1,2‐dachH ( 3 ), {[Ni(cyclam)]2[Sn2S6]}n · 2nH2O ( 4 ), and {[Mn(2,2′‐bipy)2]2[Sn2S6]} ( 5 ). Compounds 1 – 3 were prepared from elements/chlorides, whereas for the preparation of compounds 4 and 5 a new synthesis strategy was developed using Na4SnS4 · 14H2O and TM2+ centered complexes as precursor. Under solvothermal conditions in situ condensation reaction of the [SnS4]4– anions leads to the formation of the [Sn2S6]4– moiety.  相似文献   

13.
The crystal structures of two square tetracyanocomplexes were determined. [Ni(dien)2][Ni(CN)4]·2H2O (NDNCH) and [Ni‐(dien)2][Pd(CN)4] (NDPC) (dien = diethylene triamine) exhibit ionic structures consisting of mer‐[Ni(dien)2]2+ cations and [Ni(CN)4]2‐ or [Pd(CN)4]2‐ anions, respectively. Moreover, the structure of NDNCH is completed by two water molecules of crystallisation. In both compounds hydrogen bonds contribute to the stabilisation of the structure. NDNCH dehydrates on air quickly yielding anhydrous [Ni(dien)2][Ni(CN)4] (NDNC). Its thermal decomposition proceeds in a complicated process followed by aerial oxidation of metallic nickel to NiO.  相似文献   

14.
The lanthanide selenidogermanates [{Eu(en)3}2(μ‐OH)2]Ge2Se6 ( 1 ), [{Ho(en)3}2(μ‐OH)2]Ge2Se6 ( 2 ), and [{Ho(dien)2}2(μ‐OH)2]Ge2Se6 ( 3 ) (en = ethylenediamine, dien = diethylenetriamine) were solvothermally prepared by the reactions of Eu2O3 (or Ho2O3), germanium, and selenium in en and dien solvents respectively. Compounds 1 – 3 are composed of selenidogermanate [Ge2Se6]4– anion and dinuclear lanthanide complex cation [{Ln(en)3}2(μ‐OH)2]4+ (Ln = Eu, Ho) or [{Ho(dien)2}2(μ‐OH)2]4+. The [Ge2Se6]4– anion is composed of two GeSe4 tetrahedra sharing a common edge. The dinuclear lanthanide complex cations are built up from two [Ln(en)3]3+ or [Ho(dien)2]3+ ions joined by two μ‐OH bridges. All lanthanide(III) ions are in eight‐coordinate environments forming distorted bicapped trigonal prisms. In 1 – 3 , three‐dimensional supramolecular networks of the anions and cations are formed by N–H ··· Se and N–H ··· O hydrogen bonds. To the best of our knowledge, 1 – 3 are the first examples of selenidogermanate salts with lanthanide complex counter cations.  相似文献   

15.
From the 1:1 system of [Cu(dien)2](NO3)2 and K[Ag(CN)2] in water (dien is diethyl­enetri­amine, C4H13N3), the novel compound catena‐poly­[bis­[[μ‐cyano‐1:2κ2C:N‐diethyl­enetri­amine‐2κ3N‐copper(II)silver(I)]‐μ‐cyano‐1:2′κ2C:N] di­cyano­silver(I) tri­cyanodisilver(I)], [CuAg(CN)2(dien)]2[Ag(CN)2][Ag2(CN)3], has been isolated. The structure is formed from positively charged [–Cu(dien)–NC–Ag–CN–]nn+ chains and two isolated centrosymmetric [Ag(CN)2]? and [Ag2(CN)3]? anions. In the cationic chains, the Cu atoms are linked by bridging di­cyano­argentate groups, and the deformed square‐pyramidal coordination polyhedron of the CuII cation is formed from a tridentate chelate‐like bonded dien ligand and two N‐bonded bridging cyano groups. One of the bridging cyano groups occupies the apical (ap) position [mean Cu—­Neq = 2.02 (2) Å, and Cu—Nap = 2.170 (3) Å; eq is equatorial]. Short argentophilic interactions in the range 3.16–­3.30 Å are present in the crystal structure.  相似文献   

16.
Chalcogenohalogenogallates(III) and -indates(III): A New Class of Compounds for Elements of the Third Main Group. Preparation and Structure of [Ph4P]2[In2SX6], [Et4N]3[In3E3Cl6] · MeCN and [Et4N]3[Ga3S3Cl6] · THF (X = Cl, Br; E = S, Se) [In2SCl6]2?, [In2SBr6]2?, [In3S3Cl6]3?, [In3Se3Cl6]3?, and [Ga3S3Cl6]3? were synthesised as the first known chalcogenohalogeno anions of main group 3 elements. [Ph4P]2[In2SCl6] ( 1 ) (P1 ; a = 10.876(4) Å, b = 12.711(6) Å, c = 19.634(7) Å, α = 107.21(3)°, β = 96.80(3)°, γ = 109.78(3)°; Z = 2) and [Ph4P]2[In2SBr6] ( 2 ) (C2/c; a = 48.290(9) Å, b = 11.974(4) Å, c = 17.188(5) Å, β = 93.57(3)°, Z = 8) were prepared by reaction of InX3, (CH3)3SiSSi(CH3)3 and Ph4PX (X = Cl, Br) in acetonitrile. The reaction of MCl3 (M = Ga, In) with Et4NSH/Et4NSeH in acetonitrile gave [Et4N]3[In3S3Cl6] · MeCN ( 3 ) (P21/c; a = 17.328(4) Å, b = 12.694(3) Å, c = 21.409(4) Å, β = 112.18(1)°, Z = 4), [Et4N]3[In3Se3Cl6] · MeCN ( 4 ) (P21/c; a = 17.460(4) Å, b = 12.816(2) Å, c = 21.513(4) Å, β = 112.16(2)°, Z = 4), and [Et4N]3[Ga3S3Cl6] · THF ( 5 ) (P21/n; a = 11.967(3) Å, b = 23.404(9) Å, c = 16.260(3) Å, β = 90.75(2)°, Z = 4). The [In2SX6]2? anions (X = Cl, Br) in 1 and 2 consist of two InSX3 tetrahedra sharing a common sulfur atom. The frameworks of 3, 4 and 5 each contain a six-membered ring of alternating metal and chalcogen atoms. Two terminal chlorine atoms complete a distorted tetrahedral coordination sphere around each metal atom.  相似文献   

17.
Six new thioantimonates(III) with the [Sb4S7]2− anion were obtained under solvothermal conditions with in‐situ formed transition metal complexes as structure directors. In the two isostructural compounds [Fe(dien)2]Sb4S7·H2O ( 1 ) and [Co(dien)2]Sb4S7·0.5 H2O ( 2 ) (dien = diethylenetriamine; space group: P21/c) the layered [Sb4S7]2− anion is characterized by Sb8S8 rings with a diameter of about 9.6·7.6Å. The cation complexes are located above and below the pores of the rings. Despite the larger size of the cation complex the network topology of the third thioantimonate [Ni(dien)(tren)]Sb4S7 ( 3 ) (tren = tris(2‐aminoethyl)amine; space group: P21/n) is similar to that of the first two compounds. In the isostructural thioantimonates [M(trien)]Sb4S7 (M = Zn ( 4 ); M = Mn ( 5 ); trien = triethylenetetramine; space group: ) the M2+ ions are fivefold coordinated by four N atoms of the amine molecule and by one S atom of the thioantimonate anion forming a MN4S trigonal bipyramid. Sb8S16 building blocks are the central structural motifs of the anion. Two of the terminal S atoms at the periphery of the Sb8S16 units are bound to M2+ ions and the four remaining terminal S atoms connect adjacent Sb8S16 groups into the final [Sb4S7]2− chain. [Ni(tren)]Sb4S7 ( 6 ) (space group: ) contains a one‐dimensional anionic chain. The Ni2+ ion has two bonds to the [Sb4S7]2− anion which is a unique feature in the thioantimonate(III) chemistry. The NiN4S2 octahedron is severly distorted with one very long Ni‐S bond of 2.782(2) Å. In all compounds several short S···H distances indicate hydrogen bonding interactions.  相似文献   

18.
The Oxochlorotantalates (PPh4)2[Ta2OCl9]2 · 2 CH2Cl2, (PPh4)2[Ta2OCl10] · 2 CH3CN, and (K-18-crown-6)4[Ta4O6Cl12] · 12 CH2Cl2 (K-18-crown-6)4[Ta4O6Cl12] · 12 CH2Cl2 was obtained from a reaction of tantalum pentachloride, K2S5 and 18-crwon-6 in dichlormethane. According to its crystal structure analysis it is tetragonal (space group I 4 2d) and contains [Ta4O6Cl12]4– ions that have an adamantane-like Ta4O6 skeleton. Each K+ ion is coordinated by the oxygen atoms of the crown ether molecule from one side and with three Cl atoms of one [Ta4O6Cl12]4– ion from the opposite side. (PPh4)2[Ta2OCl10] · 2 CH3CN was a product from PPh4Cl and TaCl5 in acetonitrile in the presence of Na2S4. Its crystals are monoclinic (space group P21/c) and contain centrosymmetric [Ta2OCl10]2– ions having a linear Ta–O–Ta grouping with short bonds (Ta–O 189 pm). TaCl5 and H2S formed a solid substance (TaSCl3) from which a small amount of (PPh4)2[Ta2OCl9]2 · 2 CH2Cl2 was obtained by the reaction with PPh4Cl in CH2Cl2. The anions in the monoclinic crystals (space group P21/n) consist of two Ta2OCl9 units which are joined by chloro bridges; each Ta2OCl9 unit has a nearly linear Ta–O–Ta group with differing bond lengths (179 and 202 pm). The oxygen in the compounds probably was introduced by traces of water in the crown ether, acetonitrile or H2S, respectively.  相似文献   

19.
A three‐dimensional cyano‐bridged copper(II) complex, [Cu(dien)Ag(CN)2]2[Ag2(CN)3][Ag(CN)2] ( 1 ) (dien = diethylenetriamine), has been prepared and characterized by X‐ray crystallography. Complex 1 crystallized in the monoclinic space group P21/n with a = 6.988(2), b = 17.615(6), c = 12.564(4) Å, β = 90.790(5)°. The crystal consists of cis‐[Cu(dien)]2+ units bridged by [Ag(CN)2] to form a zig‐zag chain. The Ag atoms of the free and bridging [Ag(CN)2] link together to form additional infinite zig‐zag chains with short Ag···Ag distances. The presence of Ag···Ag interactions effectively increases the dimensionality from a 1‐D chain to a 3‐D coordination polymer.  相似文献   

20.
During explorative solvothermal syntheses six new compounds containing either the [Sn2S6]4− or the [SnS4]4− anion were obtained and structurally characterized: [Ni(1,2-dach)3]2Sn2S6·4H2O (1) (1,2-dach = trans-1,2-diaminocyclohexane), o-{[Ni(tepa)]2Sn2S6} (2) (tepa = tetraethylenepentamine), [Ni(peha)]2Sn2S6·H2O (3) (peha = pentaethylenehexamine), [Ni(aepa)]2Sn2S6 (4) (aepa = N-2-aminoethyl-1,3-propandiamine), [Co(dien)]2Sn2S6 (5) (dien = diethylenetriamine), and {[Mn(trien)]2SnS4} (trien = triethylenetetramine). In all compounds in-situ formed transition metal amine complexes act as charge compensating ligands or are bound to the thiostannate anions. Compound 2 is an orthorhombic polymorph of a recently published monoclinic compound. In compound 6 the very rare [Mn2N8S2] bi-octahedron is observed as main structural motif. This compound contains a one-dimensional chain which was also observed in a pseudo-polymorphic compound. The structures of all compounds are characterized by an extended hydrogen bonding network between S atoms of the anions and the H atoms of the amine ligands and/or water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号