首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The new thiophosphates Rb3Sm[PS4]2 and Cs3Sm[PS4]2 were obtained as pale yellow needles using an in‐situ formed thiophosphate flux. Rb3Sm[PS4]2 crystallizes in the space group P21 with a = 9.7061(19) Å, b = 6.7517(14) Å, c = 11.395(2) Å, β = 90.63(3)°, (Z = 2); Cs3Sm[PS4]2 in space group P21/n with a = 15.311(3) Å, b = 6.8762(14) Å, c = 15.352(3) Å, β = 99.49(3)°, (Z = 4). The crystal structures are characterized by the formation of complex anionic chains, which run along the [010] direction in both structures. One of the two independent thiophosphate groups connects three Sm3+ cations to form an infinite zigzag like arrangement, while the other acts as a terminal ligand to one Sm3+ions. Such a μ3 or face‐grafting coordination mode of a [PS4]3− anion is not very common. The Sm3+ ions are in bicapped trigonal prismatic chalcogen coordination. The average Sm–S distances within the trigonal prisms are close to 2.88Å, while the bonds to the capping atoms are distinctly longer. The chains are chiral yet their symmetry is close to 21/m. In contrast to the rubidium compound, Cs3Sm[PS4]2 contains both enantiomorphs. In both structures the chains are arranged as a distorted hexagonal rod packing.  相似文献   

2.
New Thiophosphates: The Compounds Li6Ln3(PS4)5 (Ln: Y, Gd, Dy, Yb, Lu) and Ag3Y(PS4)2 The new thiophosphates Li6Ln3(PS4)5 (Ln: Y, Gd, Dy, Yb, Lu) were synthesized by heating mixtures of Ln, P, S, and Li2S4 at 900 °C (100 h) and they were investigated by single crystal X‐ray methods. The compounds with Ln = Y (a = 28.390(2), b = 10.068(1), c = 33.715(2) Å, β = 113.85(1)°), Gd (a = 28.327(2), b = 10.074(1), c = 33.822(2) Å, β = 114.297(7)°), Dy (a = 28.124(6), b = 10.003(2), c = 33.486(7) Å, β = 113.89(3)°), Yb (a = 28.178(3), b = 9.977(1), c = 33.392(4) Å, β = 113.65(1)°), and Lu (a = 28.169(6), b = 10.002(2), c = 33.432(7) Å, β = 113.54(3)°) are isotypic and crystallize in a new structure type (C2/c; Z = 12). Main feature are PS4 tetrahedra isolated from each other surrounding the Ln and Li atoms via their S atoms. The coordination number of the five crystallographically independent Ln atoms is eight, but the polyhedra are quite different and they are interlinked to larger units extending in [010]. The environment of the Li atoms is irregular and formed by five to six S atoms. The crystal structure is compared with that of Li9Ln2(PS4)5 (Ln: Nd, Gd). For the synthesis of Ag3Y(PS4)2 (a = 16.874(3), b = 9.190(2), c = 9.312(2) Å, β = 123.17(3)°) a mixture of Y, P, S, and Ag2S was heated to 700 °C (50 h). The thiophosphate crystallizes in a new structure type (C2/c; Z = 4) composed of isolated PS4 tetrahedra. The two crystallographically independent Ag atoms are surrounded by four S atoms in the shape of distorted tetrahedra. The Ag(1)S4 polyhedra are cornershared to strands running along [001], which are linked together via Ag(2)S4 tetrahedra. The environment of the Y atoms is composed of eight S atoms each building distorted square antiprisms. These polyhedra are connected with each other via common edges to a strand running along [001].  相似文献   

3.
Pale blue, lath‐shaped single crystals of K2NdP2S7 (≡ K4Nd2[PS4]2[P2S6]; monoclinic, P21/n, a = 904.76(8), b = 677.38(6), c = 1988.7(2) pm, β = 97.295(5)°, Z = 2) are obtained by the reaction of Nd, S and P2S5 with an excess of KCl as a flux in evacuated silica tubes at 750 °C (7 d) which should produce Nd[PS4] instead. Beside isolated [PS4]3– tetrahedra, the crystal structure contains discrete ethane‐analogous [P2S6]4– (≡ [S3P–PS3]4–) units in staggered conformation with tetravalent phosphorus cations and a P–P distance of 219 pm. The two crystallographically different potassium cations show coordination numbers of nine and ten in the shape of distorted mono‐ and bicapped square antiprisms. Finally, the Nd3+ cations are surrounded by eight sulfur atoms arranged as (uncapped) square antiprisms. The entire structure is dominated by (K1)+ containing {(Nd2[PS4]2[P2S6])4–} layers parallel (101) which are three‐dimensionally interconnected by (K2)+ cations.  相似文献   

4.
The new hexathiodiphosphate(IV) hydrates K4[P2S6] · 4 H2O ( 1 ), Rb4[P2S6] · 6 H2O ( 2 ), and Cs4[P2S6] · 6 H2O ( 3 ) were synthesized by soft chemistry reactions from aqueous solutions of Na4[P2S6] · 6 H2O and the corresponding heavy alkali‐metal hydroxides. Their crystal structures were determined by single crystal X‐ray diffraction. K4[P2S6] · 4 H2O ( 1 ) crystallizes in the monoclinic space group P 21/n with a = 803.7(1), b = 1129.2(1), c = 896.6(1) pm, β = 94.09(1)°, Z = 2. Rb4[P2S6] · 6 H2O ( 2 ) crystallizes in the monoclinic space group P 21/c with a = 909.4(2), b = 1276.6(2), c = 914.9(2) pm, β = 114.34(2)°, Z = 2. Cs4[P2S6] · 6 H2O ( 3 ) crystallizes in the triclinic space group with a = 742.9(2), b = 929.8(2), c = 936.8(2) pm, α = 95.65(2), β = 112.87(2), γ = 112.77(2)°, Z = 1. The structures are built up by discrete [P2S6]4? anions in staggered conformation, the corresponding alkali‐metal cations and water molecules. O ··· S and O ··· O hydrogen bonds between the [P2S6]4? anions and the water molecules consolidate the structures into a three‐dimensional network. The different water‐content compositions result by the corresponding alkali‐metal coordination polyhedra and by the prefered number of water molecules in their coordination sphere, respectively. The FT‐Raman and FT‐IR/FIR spectra of the title compounds have been recorded and interpreted, especially with respect to the [P2S6]4? group. The thermogravimetric analysis showed that K4[P2S6] · 4 H2O converted to K4[P2S6] as it was heated at 100 °C.  相似文献   

5.
Single crystals of three rubidium uranyl selenates, Rb2[(UO2)(SeO4)2(H2O)](H2O) ( 1 ), Rb2[(UO2)2(SeO4)3(H2O)2](H2O)4 ( 2 ), and Rb4[(UO2)3(SeO4)5(H2O)] ( 3 ), have been prepared by evaporation from aqueous solutions made out of mixtures of uranyl nitrate, selenic acid and Rb2CO3. The structures of all compounds have been solved by direct methods on the basis of X‐ray diffraction data sets. The crystallographic data are as follows: ( 1 ): orthorhombic, Pna21, a = 13.677(2), b = 11.8707(13), c = 7.6397(9) Å, V = 1240.4(3) Å3, R1 = 0.045 for 2396 independent observed reflections; ( 2 ): triclinic, P1¯, a = 8.4261(12), b = 11.8636(15), c = 13.3279(18) Å, α = 102.612(10), β = 107.250(10), γ = 102.510(10)°, V = 1183.7(3) Å3, R1 = 0.067 for 4762 independent observed reflections; ( 3 ): orthorhombic, Pbnm, a = 11.3761(14), b = 15.069(2), c = 19.2089(17) Å, V = 3292.9(7) Å3, R1 = 0.075 for 3808 independent observed reflections. The structures of the phases 1 , 2 , and 3 are based upon uranyl selenate hydrate sheets composed from corner‐sharing pentagonal [UO7]8— bipyramids and [SeO4]2— tetrahedra. In the crystal structure of 1 , the sheets have composition [(UO2)(SeO4)2(H2O)]2— and run parallel to (001). The interlayer contains Rb+ cations and additional H2O molecules. In structure of 2 , the [(UO2)2(SeO4)3(H2O)2]2— sheets are oriented parallel to (101). Highly disordered Rb+ cations and H2O molecules are located between the sheets. The structure of 3 is based upon [(UO2)3(SeO4)5(H2O)]4— sheets stacked parallel to (010) and contains Rb+ cations in the interlayers. The topologies of the uranyl oxoselenate sheets observed in the structures of 1 , 2 , and 3 are related to the same simple and highly‐symmetric graph consisting of 3‐connected white and 6‐connected black vertices.  相似文献   

6.
Three Alkali‐Metal Erbium Thiophosphates: From the Layered Structure of KEr[P2S7] to the Three‐Dimensional Cross‐Linkage in NaEr[P2S6] and Cs3Er5[PS4]6 The three alkali‐metal erbium thiophosphates NaEr[P2S6], KEr[P2S7], and Cs3Er5[PS4] show a small selection of the broad variety of thiophosphate units: from ortho‐thiophosphate [PS4]3? and pyro‐thiophosphate [S3P–S–PS3]4? with phosphorus in the oxidation state +V to the [S3P–PS3]3? anion with a phosphorus‐phosphorus bond (d(P–P) = 221 pm) and tetravalent phosphorus. In spite of all differences, a whole string of structural communities can be shown, in particular for coordination and three‐dimensional linkage as well as for the phosphorus‐sulfur distances (d(P–S) = 200 – 213 pm). So all three compounds exhibit eightfold coordinated Er3+ cations and comparably high‐coordinated alkali‐metal cations (CN(Na+) = 8, CN(K+) = 9+1, and CN(Cs+) ≈ 10). NaEr[P2S6] crystallizes triclinically ( ; a = 685.72(5), b = 707.86(5), c = 910.98(7) pm, α = 87.423(4), β = 87.635(4), γ = 88.157(4)°; Z = 2) in the shape of rods, as well as monoclinic KEr[P2S7] (P21/c; a = 950.48(7), b = 1223.06(9), c = 894.21(6) pm, β = 90.132(4)°; Z = 4). The crystal structure of Cs3Er5[PS4] can also be described monoclinically (C2/c; a = 1597.74(11), b = 1295.03(9), c = 2065.26(15) pm, β = 103.278(4)°; Z = 4), but it emerges as irregular bricks. All crystals show the common pale pink colour typical for transparent erbium(III) compounds.  相似文献   

7.
Six new actinide metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6) (I), K(10)Th(3)(P(2)S(7))(4)(PS(4))(2) (II), K(5)U(PS(4))(3) (III), K(5)Th(PS(4))(3) (IV), Rb(5)Th(PS(4))(3) (V), and Cs(5)Th(PS(4))(3) (VI). Compound I crystallizes in the monoclinic space group P2(1)/c with a = 33.2897(1) A, b = 14.9295(1) A, c = 17.3528(2) A, beta = 115.478(1) degrees, Z = 8. Compound II crystallizes in the monoclinic space group C2/c with a = 32.8085(6) A, b = 9.0482(2) A, c = 27.2972(3) A, beta = 125.720(1) degrees, Z = 8. Compound III crystallizes in the monoclinic space group P2(1)/c with a = 14.6132(1) A, b = 17.0884(2) A, c = 9.7082(2) A, beta = 108.63(1) degrees, Z = 4. Compound IV crystallizes in the monoclinic space group P2(1)/n with a = 9.7436(1) A, b = 11.3894(2) A, c = 20.0163(3) A, beta = 90.041(1) degrees, Z = 4, as a pseudo-merohedrally twinned cell. Compound V crystallizes in the monoclinic space group P2(1)/c with a = 13.197(4) A, b = 9.997(4) A, c = 18.189(7) A, beta = 100.77(1) degrees, Z = 4. Compound VI crystallizes in the monoclinic space group P2(1)/c with a = 13.5624(1) A, b = 10.3007(1) A, c = 18.6738(1) A, beta = 100.670(1) degrees, Z = 4. Optical band-gap measurements by diffuse reflectance show that compounds I and III contain tetravalent uranium as part of an extended electronic system. Thorium-containing compounds are large-gap materials. Raman spectroscopy on single crystals displays the vibrational characteristics expected for [PS(4)](3)(-), [P(2)S(7)](4-), and the new [P(3)S(10)](5)(-) building blocks. This new thiophosphate building block has not been observed except in the structure of the uranium-containing compound Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6).  相似文献   

8.
Seven 1,4‐phenylenebisphosphonates of monovalent ions, A(HO3PC6H4PO3H2) (A = Li, K, Rb, Cs, Tl, Ag and NH4), were synthesized and characterized by single‐crystal X‐ray diffraction, spectroscopic and thermal methods. These compounds and the reported sodium analogue have four structure types. The sodium compound, one‐dimensional lithium compound and pillared‐layered cesium compounds have different structure types, whereas the potassium, rubidium, thallium, ammonium and silver compounds have a pillared ladder‐like structure. They undergo initial thermal decomposition in the range of 120–270 °C. Moreover, the single crystal X‐ray structure of 1,4‐phenylenebisphosphonic acid was determined.  相似文献   

9.
The new quinary fluoride‐rich rubidium scandium oxosilicate Rb3Sc2F5Si4O10 was obtained from mixtures of RbF, ScF3, Sc2O3 and SiO2 in sealed platinum ampoules after seventeen days at 700 °C. The colourless compound crystallises orthorhombically in space group Pnma with a = 962.13(5), b = 825.28(4), c = 1838.76(9) pm and Z = 4. For the oxosilicate partial structure, [SiO4]4– tetrahedra are connected in (001) by vertex‐sharing to form corrugated unbranched vierer single layers ${2}\atop{{\infty}}$ {[Si4O10]4–} (d(Si–O) = 158–165 pm, ∠(O–Si–O) = 103–114°, ∠(Si–O–Si) = 125–145°) containing six‐membered rings. Similar oxosilicate layers with 63‐net topology are well‐known for the mineral group of micas or in sanbornite Ba2Si4O10. Regarding other systems, identical tetrahedral layers can be found in the synthetic borophosphate Mg(H2O)2[B2P2O8(OH)2] · H2O. The Sc3+ cations are coordinated octahedrally by four F and two O2– anions. These cis‐[ScF4O2]5– octahedra (d(Sc–F) = 200–208 pm, d(Sc–O) = 202–205 pm) share one equatorial and two apical F anions with others to build up slightly corrugated ${1}\atop{{\infty}}$ {[Sc2F${t}\atop{2/1}$ F${v}\atop{6/2}$ O${t}\atop{4/1}$ ]7–} double chains along [010]. These are linked with the oxosilicate layers via two oxygen vertices to construct a three‐dimensional framework with cavities apt to host the three crystallographically independent Rb+ cations with coordination numbers of eleven, twelve and thirteen.  相似文献   

10.
We found new synthetic routes to obtain 1-D quaternary thiophosphate compounds and a 0-D molecular complex containing a Nb2S4 core from a 2-D ternary thiophosphate, Nb4P2S21. When Nb4P2S21 was reacted with alkali metal halides (ACl; A=Na, K, Rb, Cs) or TlCl at 500-700 °C, the -S-S-S- bridges in 2-D Nb2PS10-S-S10PNb2 were excised to form a 1-D chain, and cations were inserted between the chains to form ANb2PS10 (A=Na, K, Rb, Cs, Tl). We also found that thallium chloride (TlCl) is an excellent reagent for further excision, and it substitutes chloride ligands for the sulfur ligands of 2-D Nb4P2S21 to form the molecular complex Tl5[Nb2S4Cl8]Cl. Crystal data for TlNb2PS10: monoclinic, Pn, a=6.9452(11) Å, b=7.3761(12) Å, 12.873(2) Å, β=104.472(3)°, and Z=2. Crystal data for Tl5[Nb2S4Cl8]Cl: orthorhombic, Immm, a=7.001(5) Å, b=9.509(7) Å, c=15.546(11) Å, and Z=2.  相似文献   

11.
Ag9I3(SeO4)2(IO3)2 was obtained for the first time by reacting a stoichiometric mixture of Ag2O, AgI and SeO2 at elevated oxygen pressure (255 MPa) and at a temperature of 500 °C. Ag9I3(SeO4)2(IO3)2 was characterized by X‐ray powder diffraction, differential scanning calorimetry, impedance spectroscopy and single crystal structure analysis. The crystal structure was solved by direct methods (I23, Z = 8, a = 12.9584(6) Å, V = 2175.9(2) Å3 and R1 = 2.70 %). The crystal structure consists of isolated SeO4 tetrahedra and trigonal IO3 pyramids separated by Ag+ and I ions. Each four of the SeO42– and IO3 anions aggregate, forming a novel supramolecular building block, showing a hetero‐cubane like structure. According to the results of impedance measurements, Ag9I3(SeO4)2(IO3)2 is a good silver ion conductor. The compound shows an abrupt increase in the ionic conductivity in the temperature range of 115 to 147 °C, and has a silver ion conductivity of 7.1 × 10–5 Ω–1 cm–1 at 25 °C. The activation energy for silver ion conduction is 0.45 eV, in the temperature range from 25 to 115°.  相似文献   

12.
Wu Y  Bensch W 《Inorganic chemistry》2007,46(15):6170-6177
The reactions of Ti with in situ formed polythiophosphate fluxes of A(2)S(3) (A = Rb, Cs), P(2)S(5), and S at 500 degrees C result in the formation of two new quaternary titanium thiophosphates with compositions Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) and Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2). Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) crystallizes in the chiral hexagonal space group P6(3) (No. 173) with lattice parameters a = 18.2475(9) Angstrom, c = 6.8687(3) Angstrom, V = 1980.7(2) Angstrom(3), Z = 2. Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) crystallizes in the noncentrosymmetric monoclinic space group Cc (No. 9) with a = 21.9709(14) Angstrom, b = 6.9093(3) Angstrom, c = 17.1489(10) Angstrom, beta = 98.79(1) degrees, V = 2572.7(2) Angstrom(3), Z = 4. In the structure of 1 TiS(6) octahedra, three [PS(4)] tetrahedra, and the hitherto unknown [P(4)S(13)](6-) anion are joined to form two different types of helical chains. These chains are connected yielding two different helical tunnels being directed along [001]. The tunnels are occupied by the Rb+ ions. The [P(4)S(13)](6-) anion is generated by three [PS(4)] tetrahedra sharing corners with one [PS(4)] group in the center of the starlike anion. The P atoms of the three [PS(4)] tetrahedra attached to the central [PS(4)] group define an equilateral triangle. The [P(4)S(13)](6-) anion may be regarded as a new member of the [P(n)S(3n+1)]((n+2)-) series. The structure of Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) consists of the one-dimensional polar tunnels containing the Cs(+) cations. The rare [P(2)S(8)](4-) anion which is composed of two [PS(4)] tetrahedra joined by a S(2)(2-) anion is a fundamental building unit in the structure of 2. One-dimensional undulated chains being directed along [100] are joined by [PS(4)] tetrahedra to form the three-dimensional network with polar tunnels running along [010]. The compounds are characterized with IR, Raman spectroscopy, and UV/vis diffuse reflectance spectroscopy.  相似文献   

13.
KAg(NO3)2 crystallizes in space group P21/a-C 2h 5 ,a=13.953,b=4.955,c=8.220 Å, =97.76°,Z=4. X-ray intensities were collected with a two-circle diffractometer. The structure was solved by means of direct methods andFourier syntheses and was refined by the least squares method toR=0.034 with 1346 observed reflexions. 1 {Ag2(NO3)4}2–-chains run parallel toy and are linked by potassium ions. Ag shows a distorted tetrahedral coordination with four relatively close O. K is irregularily surrounded by ten O. The isotypic compounds NH4Ag(NO3)2 and RbAg(NO3)2 were refined toR=0.032 and 0.035, respectively. The coordination figures are compareable with those in KAg(NO3)2.
  相似文献   

14.
Single crystals of a third modification of Ag2Te2O6 (denoted as Ag2Te2O6–III) and of Ag4TeO5 have been obtained as minor by‐products during hydrothermal phase formation experiments in the system Ag‐Hg‐Te‐O. The crystal structure of Ag2Te2O6–III (P21/c, Z = 4, a = 6.4255(10), b = 6.9852(11), c = 13.204(2) Å, β = 90.090(3)°, 1885 independent reflections, R[F2 > 2σ(F2)] = 0.0334, wR2(F2 all) = 0.0817) comprises tellurium in oxidation states +IV and +VI and is topologically related to the structure of the Ag2Te2O6–I modification, which consists of similar layers and interjacent layers of Ag+ cations. Ag4TeO5 (C2/c, Z = 8, a = 16.271(2), b = 6.0874(10), c = 11.4373(16) Å, β = 106.730(10)°, 2372 independent reflections, R[F2 > 2σ(F2)] = 0.0288, wR2(F2 all) = 0.0737) is made up of a layer‐like arrangement of isolated [TeVI2O10] double octahedra and of Ag+ cations situated both in layers parallel and inside the layers of the anionic moieties.  相似文献   

15.
《Comptes Rendus Chimie》2017,20(5):534-539
We report the synthesis, characterization and crystal structure of a new mononuclear silver(I) complex, [Ag(catsc)(PPh3)2]NO3 (catsc = 3-phenylpropenalthiosemicarbazone). The complex was prepared by the reaction of catsc and AgNO3 in the presence of PPh3 and characterized by elemental analysis (CHN), FTIR, 1H, 13C and 31P NMR spectroscopy, and single-crystal X-ray diffraction. In the complex, catsc acts as a bidentate NS ligand while the nitrate is a counter ion. The silver ion is coordinated by a bidentate ligand and two PPh3 in the form of a distorted tetrahedron. In addition, the antibacterial effect of the complex was studied against the standard strains of two gram-positive (Staphylococcus aureus and Enterococcus faecalis) and two gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria.  相似文献   

16.
Synthesis, Vibrational Spectra, and Crystal Structures of the Nitrato Argentates (Ph4P)[Ag(NO3)2(CH3CN)]·CH3CN and (Ph4P)[Ag2(NO3)3] Tetraphenylphosphonium bromide reacts in acetonitril suspension with excess silver nitrate to give (Ph4P)[Ag(NO3)2(CH3CN)]·CH3CN ( 1 ), whereas (Ph4P)[Ag2(NO3)3] ( 2 ) is obtained in a long‐time reaction from (Ph4P)Br and excess AgNO3 in dichloromethane suspension. Both complexes were characterized by vibrational spectroscopy (IR, Raman) and by single crystal structure determinations. 1 : Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1781.5(3), b = 724.8(1), c = 2224.2(3) pm, β = 96.83(1)°, R1 = 0.0348. 1 contains isolated complex units [Ag(NO3)2(CH3CN)]?, in which the silver atom is coordinated by the chelating nitrate groups and by the nitrogen atom of the solvated CH3CN molecule with a short Ag—N distance of 220.7(4) pm. 2 : Space group I2, Z = 4, lattice dimensions at 193 K: a = 1753.4(4), b = 701.7(1), c = 2105.5(4) pm, R1 = 0.072. In the polymeric anions [Ag2(NO3)3]? each silver atom is coordinated in a chelating manner by one nitrate group and by two oxygen atoms of two bridging nitrate ions. In addition, each silver atom forms a weak π‐bonding contact with a phenyl group of the (Ph4P)+ ions with shortest Ag···C separations of 266 and 299 pm, respectively, indicating a (4+1) coordination of silver atoms.  相似文献   

17.
Sodium magnesium selenite NaMg2(OH)(SeO3)2 and rubidium zinc selenite RbZn2(OH)(SeO3)2 were prepared by hydrothermal reactions. The crystal structures of the title compounds were determined by single‐crystal X‐ray diffraction. NaMg2(OH)(SeO3)2 crystallizes in the orthorhombic space group Pnma (no. 62) with lattice parameters a = 13.1919(10), b = 6.0415(4), c = 8.2182(6) Å, and Z = 4 and RbZn2(OH)(SeO3)2 crystallizes in the triclinic space group P$\bar{1}$ (no. 2) with lattice parameters a = 4.8698(5), b = 7.3446(8), c = 11.7796(12) Å, α = 82.554(3), β = 78.456(2), γ = 71.603(3)°,and Z = 2. The structure of NaMg2(OH)(SeO3)2 is a three‐dimensional framework consisting of edge‐sharing MgO6 octahedra and trigonal pyramidal SeO32– groups, whereas the structure of RbZn2(OH)(SeO3)2 is a two‐dimensional layers structure consisting of corner‐sharing [Zn2O7] dimers linked by trigonal pyramidal SeO32– groups. The compounds were characterized by the solid state UV/Vis/NIR diffuse reflectance, and FT‐IR spectroscopy.  相似文献   

18.
From solid state reactions of Ag2O, HgO, and Sb2O3 at high temperatures under elevated oxygen pressures a new silver mercury antimonate, Ag5HgSbO6, has been obtained. According to a single crystal structure determination Ag5HgSbO6 crystallizes in space group P$\bar{3}$ 1c (no. 163) with a = 5.9263(4), c = 12.3023(7) Å, V = 374.18(4) Å3, Z = 2, 498 independent reflections, R1 = 0.030, wR2 = 0.059 (I ≥ 2 σ (I). Ag5HgSbO6 consists of HgSbO6 layers, analogous to BiI3, which are separated by Kagome nets formed by Ag+ ions. Perpendicular to these layers and along the c axis linear strings of Ag+ ions run through the large voids of the layers. Accordingly, Ag5HgSbO6 adopts the Ag5Pb2O6 type of structure where the lead positions are occupied by mercury and antimony alternatingly. The finding of mercury in octahedral coordination, particularly besides the lower charged Ag+ cations in linear coordination, which is also highly preferred by Hg2+ ions, is rather unexpected. Ag5HgSbO6 starts to decompose at 450 °C and, in contrast to subvalent and metallic Ag5Pb2O6, the new compound is charge balanced and semiconducting (ρ = 5.7 Ωcm at ambient temperature, Ea = 0.047 eV).  相似文献   

19.
The betain‐like carbodiphosphorane CS2 adduct S2CC(PPh3)2 ( 1 ) reacts with Ag(I) salts which contain weakly coordinating anions such as [BF4]? or [Al{OC(CF3)3}4]? to produce the cluster compounds [Ag6{S2CC(PPh3)2}4][BF4]6 ( 2 ) and [Ag4{S2CC(PPh3)2}4][Al{OC(CF3)3}4]4 ( 3 ), respectively, as orange yellow crystals containing solvent molecules. In the solid state the Ag4 unit in 3 forms a tetrahedron, and in the Ag6 core of 2 two of the opposite edges of the tetrahedron are bridged by Ag+ ions. The clusters are held together by argentophilic interactions, and each sulfur atom of 1 is coordinated to four (as in 2 ) or three (as in 3 ) silver atoms. The compounds are characterized by IR and 31P NMR spectroscopic studies and by X‐ray diffraction analyses.  相似文献   

20.
An alkali-metal sulfur reactive flux has been used to synthesize a series of quaternary rare-earth metal compounds. These include KLaP(2)S(6) (I), K(2)La(P(2)S(6))(1/2)(PS(4)) (II), K(3)La(PS(4))(2) (III), K(4)La(0.67)(PS(4))(2) (IV), K(9-x)La(1+x/3)(PS(4))(4) (x = 0.5) (V), K(4)Eu(PS(4))(2) (VI), and KEuPS(4) (VII). Compound I crystallizes in the monoclinic space group P2(1)/c with the cell parameters a = 11.963(12) A, b = 7.525(10) A, c = 11.389(14) A, beta = 109.88(4) degrees, and Z = 4. Compound II crystallizes in the monoclinic space group P2(1)/n with a = 9.066(6) A, b = 6.793(3) A, c = 20.112(7) A, beta = 97.54(3) degrees, and Z = 4. Compound III crystallizes in the monoclinic space group P2(1)/c with a= 9.141(2) A, b = 17.056(4) A, c = 9.470(2) A, beta = 90.29(2) degrees, and Z = 4. Compound IV crystallizes in the orthorhombic space group Ibam with a = 18.202(2) A, b = 8.7596(7) A, c = 9.7699(8) A, and Z = 4. Compound V crystallizes in the orthorhombic space group Ccca with a = 17.529(9) A, b = 36.43(3) A, c = 9.782(4) A, and Z = 8. Compound VI crystallizes in the orthorhombic space group Ibam with a = 18.29(5) A, b = 8.81(2) A, c= 9.741(10) A, and Z = 4. Compound VII crystallizes in the orthorhombic space group Pnma with a = 16.782(2) A, b = 6.6141(6) A, c = 6.5142(6) A, and Z = 4. The sulfur compounds are in most cases isostructural to their selenium counterparts. By controlling experimental conditions, these structures can be placed in quasi-quaternary phase diagrams, which show the reaction conditions necessary to obtain a particular thiophosphate anionic unit in the crystalline product. These structures have been characterized by Raman and IR spectroscopy and UV-vis diffuse reflectance optical band gap analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号