首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the Crystal Structure of Rb2C2 and Cs2C2 By reaction of rubidium or caesium solved in liquid ammonia with acetylene AC2H with A = Rb, Cs was obtained, which was subsequently converted into the binary acetylide A2C2 in vacuum at temperatures of 520 K (Rb2C2) and 470 K (Cs2C2) using a surplus of the respective alkali metal. The crystal structures of the very air sensitive compounds were solved and refined by a combination of both neutron and X‐ray powder diffraction data. Rb2C2 as well as Cs2C2 coexist in two modifications. The hexagonal modification (P 6 2m, Z = 3) crystallises in the known Na2O2 structure type with two crystallographic independent sites for the C22– dumbbells. For the orthorhombic modification (Pnma, Z = 4) a new structure type was found, which is related to the PbCl2 structure type with ordered C22– dumbbells occupying the Pb sites. Temperature dependent investigations between 4 K and the decomposition temperature by the means of neutron and X‐ray powder diffraction resulted in a very complex dynamic disorder of the C2 dumbbells, which is still not completely understood. The frequencies of the C–C stretching vibration determined by the help of Raman spectroscopy fit nicely to the results obtained for other alkali metal acetylides and alkali metal hydrogen acetylides. These results seem to indicate that the electronegativity of the alkali metal has a strong influence on the frequency of the C–C stretching vibration.  相似文献   

2.
The reactions of 3,10‐C‐meso‐3,5,7,7,10,12,14,14‐octamethyl‐1,4,8,11‐tetraazacyclotetradecadiene, L1, and two isomers (LB and LC, differing in the orientation of methyl groups on the chiral carbon atoms) of its reduced form with PdCl2 and K2[Pd(SCN)4], produce square‐planar tetrachloro‐ and tetrathiocyano‐palladium(II) complexes of general formulae [PdL′][PdCl4] and [PdL′][Pd(SCN)4] (L′ = L1, LB and LC), respectively. By contrast, the third ane isomer, LA, upon reaction with the same reagents, PdCl2 and K2[Pd(SCN)4], formed octahedral tetrachloro‐ and tetrathiocyanato‐palladium(IV) complexes [PdLACl2]Cl2 and [PdLA(SCN)2](SCN)2, respectively. The [PdL′][PdCl4] and [PdLACl2]Cl2 complexes undergo substitution reactions with KSCN to form square‐planar and octahedral tetrathiocyanato complexes [PdL′][Pd(SCN)4] and [PdLA(SCN)2](SCN)2, respectively. All complexes have been characterized on the basis of analytical, spectroscopic, conductometric and magnetochemical data. The anti‐fungal and anti‐bacterial activities of these complexes have been studied against some phytopathogenic fungi and bacteria. The crystal structure of [PdL1][Pd(SCN)4] has been confirmed by X‐ray crystallography and shows with square‐planar PdN4 and PdS4 geometries [monoclinic, space group C2/c, a = 17.884(3) Å, b = 14.734(2) Å, c = 11.4313(18) Å, β = 104.054(5)° ]. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glucopyranoside (β‐GlcNAcOCH3), (I), crystallizes from water as a dihydrate, C9H17NO6·H2O, containing two independent molecules [denoted (IA) and (IB)] in the asymmetric unit, whereas the crystal structure of methyl 2‐formamido‐2‐deoxy‐β‐d ‐glucopyranoside (β‐GlcNFmOCH3), (II), C8H15NO6, also obtained from water, is devoid of solvent water molecules. The two molecules of (I) assume distorted 4C1 chair conformations. Values of ϕ for (IA) and (IB) indicate ring distortions towards BC2,C5 and C3,O5B, respectively. By comparison, (II) shows considerably more ring distortion than molecules (IA) and (IB), despite the less bulky N‐acyl side chain. Distortion towards BC2,C5 was observed for (II), similar to the findings for (IA). The amide bond conformation in each of (IA), (IB) and (II) is trans, and the conformation about the C—N bond is anti (C—H is approximately anti to N—H), although the conformation about the latter bond within this group varies by ∼16°. The conformation of the exocyclic hydroxymethyl group was found to be gt in each of (IA), (IB) and (II). Comparison of the X‐ray structures of (I) and (II) with those of other GlcNAc mono‐ and disaccharides shows that GlcNAc aldohexopyranosyl rings can be distorted over a wide range of geometries in the solid state.  相似文献   

4.
Three new oxo‐centered trinuclear mixed‐bridged carboxylate complexes with terminal unsaturated ligands ([M2M′(μ3‐O)(μ‐O2C3H3)5(μ‐O4C6H7)(O2C3H3) (H2O)2]·2H2O [M = Fe, M′ = Fe ( 1 ); M = Fe, M′ = Cr ( 2 ); M = Cr, M′ = Fe ( 3 )]) have been synthesized and characterized by means of elemental analyses, IR spectra and crystal structure analyses. The compounds crystallize isotypically in the orthorhombic space group type Pbcn with a = 24.622(3) Å, b = 16.304(2) Å, c = 17.491(2) Å, V = 7021.5(15) Å3 ( 1 ), a = 24.708(5) Å, b = 16.290(2) Å, c = 17.394(2) Å, V = 7001.0(18) Å3 ( 2 ), a = 24.611(4) Å, b = 16.300(3) Å, c = 17.359(3) Å, V = 6964(2) Å3 ( 3 ), and Z = 8. The infrared spectra show resolved bands arising from νasym(OCO) and νsym(OCO) vibrations of monodentate and bridging carboxylate ligands along with those of νasym(M2M′O) vibrations in the complexes.  相似文献   

5.
The title compound, also known as β‐erythroadenosine, C9H11N5O3, (I), a derivative of β‐adenosine, (II), that lacks the C5′ exocyclic hydroxymethyl (–CH2OH) substituent, crystallizes from hot ethanol with two independent molecules having different conformations, denoted (IA) and (IB). In (IA), the furanose conformation is OT1E1 (C1′‐exo, east), with pseudorotational parameters P and τm of 114.4 and 42°, respectively. In contrast, the P and τm values are 170.1 and 46°, respectively, in (IB), consistent with a 2E2T3 (C2′‐endo, south) conformation. The N‐glycoside conformation is syn (+sc) in (IA) and anti (−ac) in (IB). The crystal structure, determined to a resolution of 2.0 Å, of a cocrystal of (I) bound to the enzyme 5′‐fluorodeoxyadenosine synthase from Streptomyces cattleya shows the furanose ring in a near‐ideal OE (east) conformation (P = 90° and τm = 42°) and the base in an anti (−ac) conformation.  相似文献   

6.
CCl2 free radicals were produced by a pulsed dc discharge of CCl4 in Ar. Ground electronic state CCl2(X) radicals were electronically excited to the A1B1 (0,4,0) vibronic state with an Nd:YAG laser pumped dye laser at 541.52 nm. Experimental quenching data of excited CCl2(A1B1 and a3B1) by O2, N2, NO, N2O, NH3, NH(CH3)2, NH(C2H5)2, and N(C2H5)3 molecules were obtained by observing the time‐resolved total fluorescence signal of the excited CCl2 radical in a cell, which showed a superposition of two exponential decay components under the presence of quencher. The quenching rate constants kA of CCl2(A) state and ka of CCl2(a) state were derived by analyzing the experimental data according to a proposed three‐level model to deal with the CCl2(X1A1, A1B1, a3B1) system. The formation cross sections of complexes of electronically excited CCl2 radicals with O2, N2, NO, N2O, NH3, and aminated molecules were calculated by means of a collision‐complex model. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 351–356, 2002  相似文献   

7.
Demarcation of the PbFCl and Cu2Sb Structure Families: Crystal Structure Re‐Determinations and Refinements of CuMgSb, Cu2Sb, and CuMgAs The crystal structures of CuMgSb, Cu2Sb, and CuMgAs have been re‐determined and refined from single crystal data, and the structural relationship between CuMgSb (cubic), Cu2Sb (tetragonal) and CuMgAs (orthorhombic) is discussed in detail. CuMgAs does not crystallize in the Cu2Sb type, as assumed until now; but in a new structure type oP24 (Pnma; Z = 8): a = 1346.0(1) pm, b = 395.40(3) pm, c = 739.58(6) pm. The structure is related to Cu2Sb and can be derived from it following the principle of ′chemical twinning′. The re‐determined parameters of Cu2Sb are included in a structure field diagram together with additional representatives of the PbFCl type. The structure field can be devided into three regions with the prototypes PbFCl, Cu2Sb, and Fe2As, respectively. The assignment can be related to the predominant type of bonding of each structure.  相似文献   

8.
Multidentate N‐heterocyclic compounds form a variety of metal complexes with many intriguing structures and interesting properties. The title coordination polymer, catena‐poly[zinc(II)‐bis{μ‐2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole}‐κ2N3:N3′;N3′:N3‐zinc(II)‐bis(μ‐benzene‐1,2‐dicarboxylato)‐κ2O1:O23O1,O1′:O2], [Zn2(C8H4O4)2(C11H10N4)2]n, has been synthesized by the reaction of Zn(NO3)2 with 2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole (imb) and benzene‐1,2‐dicarboxylic acid (H2bdic) under hydrothermal conditions. There are two crystallographically distinct imb ligands [imb(A) and imb(B)] in the structure which adopt very similar coordination geometries. The imb(A) ligand bridges two symmetry‐related Zn1 ions, yielding a binuclear [(Zn1)2{imb(A)}2] unit, and the imb(B) ligand bridges two symmetry‐related Zn2 ions resulting in a binuclear [(Zn2)2{imb(B)}2] unit. The above‐mentioned binuclear units are further connected alternately by pairs of bridging bdic2− ligands, forming an infinite one‐dimensional chain. These one‐dimensional chains are further connected through N—H...O hydrogen bonds, leading to a two‐dimensional layered structure. In addition, the title polymer exhibits good fluorescence properties in the solid state at room temperature.  相似文献   

9.
For the preparation of well‐defined H2O‐soluble C60 polymers, several C60‐PEG conjugates were prepared from a C60 biscarboxylic acid derivative and monodisperse NH2‐PEGs (NH2‐EGn, = 4 – 36) via amide conjugation. When the relatively long PEGs (EGn,  12) were employed, the C60‐PEG conjugates became completely H2O‐soluble by forming micelle‐like structure shown by the data of surface tension, DLS, and cryo‐TEM. Interestingly, these H2O‐soluble C60‐PEG conjugates (C60(EGn)2, = 12 – 36) showed reversible thermoresponse to form larger aggregates (ca. 1 μm by DLS) at higher temperatures. The temperature for the aggregation was related to the lengths of PEGs attached to C60; 29 °C (C60(EGn)2, = 12), 51 °C (= 20), and 72 °C (= 36). This thermoresponse was speculated to occur by dehydration of well‐organized PEG chains in the micelle‐type structure of monodisperse C60‐PEG caused by gauche‐to‐anti conformational change of PEG anchors. This thermoresponse of well‐defined amphiphilic C60‐PEG conjugates indicates potential applications in areas such as temperature sensors and thermoresponsive materials.  相似文献   

10.
2‐Amino‐3‐hydroxypyridinium dioxido(pyridine‐2,6‐dicarboxylato‐κ3O2,N,O6)vanadate(V), (C5H7N2O)[V(C7H3NO4)O2] or [H(amino‐3‐OH‐py)][VO2(dipic)], (I), was prepared by the reaction of VCl3 with dipicolinic acid (dipicH2) and 2‐amino‐3‐hydroxypyridine (amino‐3‐OH‐py) in water. The compound was characterized by elemental analysis, IR spectroscopy and X‐ray structure analysis, and consists of an anionic [VO2(dipic)] complex and an H(amino‐3‐OH‐py)+ counter‐cation. The VV ion is five‐coordinated by one O,N,O′‐tridentate dipic dianionic ligand and by two oxide ligands. Thermal decomposition of (I) in the presence of polyethylene glycol led to the formation of nanoparticles of V2O5. Powder X‐ray diffraction (PXRD) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of the synthesized powder.  相似文献   

11.
Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)] · 7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)] · 4H2O (NDUS1), and one uranyl selenate‐selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L ‐cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4) Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two‐dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two‐dimensional uranyl selenate‐selenite sheets with a U/Se ratio of 1/2. In‐situ reaction of the L ‐cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L ‐cystine, balancing the charge of the sheets.  相似文献   

12.
Oxazolidin‐2‐ones are widely used as protective groups for 1,2‐amino alcohols and chiral derivatives are employed as chiral auxiliaries. The crystal structures of four differently substituted oxazolidinecarbohydrazides, namely N′‐[(E)‐benzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12N3O3, (I), N′‐[(E)‐2‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (II), (4S)‐N′‐[(E)‐4‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (III), and (4S)‐N′‐[(E)‐2,6‐dichlorobenzylidene]‐N,3‐dimethyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C13H13Cl2N3O3, (IV), show that an unexpected mild‐condition racemization from the chiral starting materials has occurred in (I) and (II). In the extended structures, the centrosymmetric phases, which each crystallize with two molecules (A and B) in the asymmetric unit, form A+B dimers linked by pairs of N—H...O hydrogen bonds, albeit with different O‐atom acceptors. One dimer is composed of one molecule with an S configuration for its stereogenic centre and the other with an R configuration, and possesses approximate local inversion symmetry. The other dimer consists of either R,R or S,S pairs and possesses approximate local twofold symmetry. In the chiral structure, N—H...O hydrogen bonds link the molecules into C(5) chains, with adjacent molecules related by a 21 screw axis. A wide variety of weak interactions, including C—H...O, C—H...Cl, C—H...π and π–π stacking interactions, occur in these structures, but there is little conformity between them.  相似文献   

13.
Crystal Structure of Sodium Dihydrogencyamelurate Tetrahydrate Na[H2(C6N7)O3] · 4 H2O Sodium dihydrogencyamelurate‐tetrahydrate Na[H2(C6N7)O3]·4 H2O was obtained by neutralisation of an aqueous solution, previously prepared by hydrolysis of the polymer melon with sodium hydroxide. The crystal structure was solved by single‐crystal X‐ray diffraction ( a = 6.6345(13), b = 8.7107(17), c = 11.632(2) Å, α = 68.96(3), β = 87.57(3), γ = 68.24(3)°, V = 579.5(2) Å3, Z = 2, R1 = 0.0535, 2095 observed reflections, 230 parameters). Both hydrogen atoms of the dihydrogencyamelurate anion are directly bound to nitrogen atoms of the cyameluric nucleus, thus proving the preference of the keto‐tautomere in salts of cyameluric acid in the solid‐state. The compound forms a layer‐like structure with an extensive hydrogen bonding network.  相似文献   

14.
Summary It was proved that the partial adsorbed quantities can be calculated from the individual adsorption isotherms. This calculation can be carried out by equations which take into' account the energetical heterogeneity of the surface of adsorbent as well. Thus, the partial isotherms equations which can be applied are as followsV A (p A ,p B ) =p A /[b a + (p A +b AB p B ) m ] 1/m andV B (p A ,p B ) =p B /[b B + (p B +b BA p A ) m ] 1/m wherep A andp B are the partial equilibrium pressures, whileb A ,b B andm are constants which can be determined on the basis of the individual isotherms.
Zusammenfassung Es wurde nachgewiesen, daß die partialen Adsorbatmengen aus den individuellen Isothermen berechnet werden können. Die Berechnung kann mit Hilfe von Gleichungen durchgeführt werden, die auch die energetische Inhomogenität der adsorbierenden Oberfläche berücksichtigen. Benutzt werden die Gleichungen: VA(pA,pB) = pA/ [bA + (PA + bABpB)m]1/m und VB(pA,pB) pB/[bB + (pB + bBApA)m]1/m , wop A undp B die Gleichgewichtspartialdrucke undb A ,b B undm die aus den individuellen Isothermen zu bestimmenden Konstanten darstellen.
  相似文献   

15.
Vanadium chemistry is of interest due its biological relevance and medical applications. In particular, the interactions of high‐valent vanadium ions with sulfur‐containing biologically important molecules, such as cysteine and glutathione, might be related to the redox conversion of vanadium in ascidians, the function of amavadin (a vanadium‐containing anion) and the antidiabetic behaviour of vanadium compounds. A mechanistic understanding of these aspects is important. In an effort to investigate high‐valent vanadium–sulfur chemistry, we have synthesized and characterized the non‐oxo divanadium(IV) complex salt tetraphenylphosphonium tri‐μ‐<!?tlsb=‐0.11pt>methanolato‐κ6O:O‐bis({tris[2‐sulfanidyl‐3‐(trimethylsilyl)phenyl]phosphane‐κ4P,S,S′,S′′}vanadium(IV)) methanol disolvate, (C24H20P)[VIV2(μ‐OCH3)3(C27H36PS3)2]·2CH3OH. Two VIV metal centres are bridged by three methanolate ligands, giving a C2‐symmetric V2(μ‐OMe)3 core structure. Each VIV centre adopts a monocapped trigonal antiprismatic geometry, with the P atom situated in the capping position and the three S atoms and three O atoms forming two triangular faces of the trigonal antiprism. The magnetic data indicate a paramagnetic nature of the salt, with an S = 1 spin state.  相似文献   

16.
Five new quaternary chalcogenides of the 1113 family, namely BaAgTbS3, BaCuGdTe3, BaCuTbTe3, BaAgTbTe3, and CsAgUTe3, were synthesized by the reactions of the elements at 1173–1273 K. For CsAgUTe3 CsCl flux was used. Their crystal structures were determined by single‐crystal X‐ray diffraction studies. The sulfide BaAgTbS3 crystallizes in the BaAgErS3 structure type in the monoclinic space group C3,2hC2/m, whereas the tellurides BaCuGdTe3, BaCuTbTe3, BaAgTbTe3, and CsAgUTe3 crystallize in the KCuZrS3 structure type in the orthorhombic space group D1,27,hCmcm. The BaAgTbS3 structure consists of edge‐sharing [TbS69–] octahedra and [AgS59–] trigonal pyramids. The connectivity of these polyhedra creates channels that are occupied by Ba atoms. The telluride structure features 2[MLnTe32–] layers for BaCuGdTe3, BaCuTbTe3, BaAgTbTe3, and 2[AgUTe31–] layers for CsAgUTe3. These layers comprise [MTe4] tetrahedra and [LnTe6] or [UTe6] octahedra. Ba or Cs atoms separate these layers. As there are no short Q ··· Q (Q = S or Te) interactions these compounds achieve charge balance as Ba2+M+Ln3+(Q2–)3 (Q = S and Te) and Cs+Ag+U4+(Te2–)3.  相似文献   

17.
The reaction of CuBr2 with 1,10‐phen‐H2O (1,10‐phen = 1,10‐phenanthroline) gave two compounds: CuBr2(C12H8N2) and Cu3Br3(C12H8N2)2. Their structures have been characterized by single‐crystal X‐ray diffraction analysis, elemental analyses, thermogravimetric analyses (TGA) and measurement of variable temperature magnetic susceptibility. Crystal data for CuBr2(C12‐H8N2): monoclinic, space group P21/n, a = 0.9977(3) nm, b = 0.65138(14) nm, c = 1.8207(4) nm, β = 91.624(18)°, V = 1.1828(5) nm3, Z = 2. Crystal data for Cu3Br3(C12H8N2)2: monoclinic, space group C2/c, a = 1.00167(11) nm, b = 1.4523(4) nm, c = 1.6295(3) nm, β = 94.386(14)°, V = 2.3635(8) nm3, Z = 3.  相似文献   

18.
Bisviologen-linked ruthenium(II) complexes with different methylene chain length between ruthenium complex and viologen, Ru(bpy)2(dcbpy)CmVACnVB(m=2, n=3; m=3, n=4), were synthesized and characterized. From luminescence spectra, the photoexcited state of Ru(bpy)2(dcbpy) moiety is oxidatively quenched by the bound viologen, and an intramolecular electron transfer occurs. Luminescence lifetime measurements show that the electron transfers from the photoexcited state of ruthenium(II) complex moiety to the bound bisviologen more rapidly than that of monoviologen-linked ruthenium(II) complexes. Ru(bpy)2(dcbpy)CmVACnVB were applied to the photoinduced hydrogen evolution in the system containing nicotinamide-adenine dinucleotide phosphate (reduced form, NADPH), Ru(bpy)2(dcbpy)CmVACnVB and hydrogenase under steady state irradiation. In the case of Ru(bpy)2(dcbpy)C3VAC4VB, the efficient photoinduced hydrogen evolution was observed.  相似文献   

19.
The title compound, 9(R)‐[6(R)‐hydroxy­methyl‐1‐oxa‐4‐thia­cyclo­hexan‐2‐yl]‐1,9‐di­hydro‐6H‐purin‐6‐one–water (4/3), C10H12N4O3S·0.75H2O, crystallizes in the triclinic space group P1 with four mol­ecules in the asymmetric unit and 0.75 waters of hydration per mol­ecule. The structure was refined to an R value of 0.072 for 3382 observed reflections. The four crystallographically independent mol­ecules are designated A, B, C and D. All four oxa­thia­ne rings adopt the chair conformation and the purine bases are in an anti orientation with respect to the sugar moieties. Molecules A and D and mol­ecules C and B are base paired by a single hydrogen bond of the type N—H?N. These base pairs are again hydrogen bonded to their translated pairs in the direction of a cell diagonal.  相似文献   

20.
The silver bismuth trideca­sulfide Ag3.5Bi7.5S13 crystallizes in the monoclinic space group C2/m. Its structure is built up of two alternating kinds of layered modules parallel to (001). In the module denoted A, octa­hedra around the metal positions (M = Ag/Bi, M2 and an S atom on 2/m, other atoms on m) alternate with paired monocapped trigonal prisms around Bi. The NaCl‐type module B is composed of parallel eight‐membered chains of edge‐sharing octa­hedra running dia­gonally across it. Ag3.5Bi7.5S13 is the member with N = 8 of the pavonite homologous series NP of ternary compounds with the general formula [Bi2S3]2·[AgBiS2](N−1)/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号