首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The perceived wisdom about thin sheet fracture is that (i) the crack propagates under mixed mode I & III giving rise to a slant through-thickness fracture profile and (ii) the fracture toughness remains constant at low thickness and eventually decreases with increasing thickness. In the present study, fracture tests performed on thin DENT plates of various thicknesses made of stainless steel, mild steel, 6082-O and NS4 aluminium alloys, brass, bronze, lead, and zinc systematically exhibit (i) mode I “bath-tub”, i.e. “cup & cup”, fracture profiles with limited shear lips and significant localized necking (more than 50% thickness reduction), (ii) a fracture toughness that linearly increases with increasing thickness (in the range of 0.5-). The different contributions to the work expended during fracture of these materials are separated based on dimensional considerations. The paper emphasises the two parts of the work spent in the fracture process zone: the necking work and the “fracture” work. Experiments show that, as expected, the work of necking per unit area linearly increases with thickness. For a typical thickness of , both fracture and necking contributions have the same order of magnitude in most of the metals investigated.A model is developed in order to independently evaluate the work of necking, which successfully predicts the experimental values. Furthermore, it enables the fracture energy to be derived from tests performed with only one specimen thickness. In a second modelling step, the work of fracture is computed using an enhanced void growth model valid in the quasi plane stress regime. The fracture energy varies linearly with the yield stress and void spacing and is a strong function of the hardening exponent and initial void volume fraction. The coupling of the two models allows the relative contributions of necking versus fracture to be quantified with respect to (i) the two length scales involved in this problem, i.e. the void spacing and the plate thickness, and (ii) the flow properties of the material. Each term can dominate depending on the properties of the material which explains the different behaviours reported in the literature about thin plate fracture toughness and its dependence with thickness.  相似文献   

3.
4.
Periodic density functional theory (DFT) and DFT+U calculations are used to evaluate various mechanical properties associated with the fracture of chromia (Cr2O3) along the [0 0 0 1] and directions. The properties investigated include the tensile strength, elastic constants, and surface energies. The tensile strengths are evaluated using an ideal tensile test, which provides the theoretical tensile strength, and by fitting the calculated data to universal binding energy relationships (UBER), which permit the extrapolation of the calculated results to arbitrary length scales. The results demonstrate the ability of the UBER to yield a realistic estimate of the tensile strength of a 10-μm-thick sample of Cr2O3 using data obtained through calculations on nanoscopic systems. We predict that Cr2O3 will fracture most easily in the direction, with a best estimate for the tensile strength of 386 MPa for a 10 μm grain, consistent with flexural strength measurements for chromia. The grain becomes considerably stronger at the nanoscale, where we predict a tensile strength along the same direction of 32.1 GPa for 1.45 nm crystallite. The results also provide insight into the origin of the direction dependence of the mechanical properties of Cr2O3, with the differences in the behavior along different directions being related to the number of Cr-O bonds supporting the applied tensile load. Additionally, the results shed light on various practical aspects of modeling the mechanical properties of materials with DFT+U calculations and in using UBERs to estimate the mechanical properties of materials across disparate length scales.  相似文献   

5.
6.
A thermodynamic formulation of magneto-thermo-viscoelastic constitutive and fracture theory is developed, accounting for non-linear, thermal and hysteresis effects. State equations and energy flux integral are obtained in consideration of the Helmholtz free energy including the contribution of the free magnetic field as a functional of the histories of deformation, temperature and magnetic induction in the reference configuration. The rate of energy flow towards the crack front per unit crack advance provides the crack driving force in the presence of magneto-thermo-mechanical coupling and hysteresis, which is evaluated through formation of energy-momentum tensor for steady-state crack propagation. A fracture criterion based on the generalized -integral thus formulated overcomes the difficulty encountered by existing treatments and helps to understand the fracture behavior of both conservative and dissipative materials subject to combined magnetic, thermal and mechanical loadings. Reduction of this formulation to finite magneto-thermo-viscoelasticity is provided with polynomial expansion of the Helmholtz free energy functional.  相似文献   

7.
Interface delamination during indentation of micron-scale ceramic coatings on metal substrates is modeled using discrete dislocation (DD) plasticity to elucidate the relationships between delamination, substrate plasticity, interface adhesion, elastic mismatch, and film thickness. In the DD method, plasticity in the metal substrate occurs directly via the motion of dislocations, which are governed by a set of physically based constitutive rules for nucleation, motion and annihilation. A cohesive law with peak stress characterizes the traction-separation response of the metal/ceramic interface. The indenter is a rigid flat punch and plane strain deformation is assumed. A continuum plasticity model of the same problem is studied for comparison. For low interface strengths (e.g. ), DD and continuum plasticity results are quantitatively similar, with delamination being nearly independent of interface strength, and easier for thinner, lower-modulus films. For higher interface strengths (), continuum plasticity predicts no delamination up to very high loads while the DD model shows a smooth increase in the critical indentation force for delamination with increasing interface strength. Tensile delamination in the DD model is driven by the accumulation of dislocations, and their associated high stresses, at the interface upon unloading. The DD model is thus capable of predicting the nucleation of cracks, and its dependence on material parameters, in realms of realistic constitutive behavior and/or small length scales where conventional continuum plasticity fails.  相似文献   

8.
The orientation dependent plasticity in metal nanowires is investigated using molecular dynamics and dislocation dynamics simulations. Molecular dynamics simulations show that the orientation of single crystal metal wires controls the mechanisms of plastic deformation. For wires oriented along , dislocations nucleate along the axis of the wire, making the deformation homogeneous. These wires also maintain most of their strength after yield. In contrast, wires oriented along and directions deform through the formation of twist boundaries and tend not to recover when high angle twist boundaries are formed. The stability of the dislocation structures observed in molecular dynamics simulations are investigated using analytical and dislocation dynamics models.  相似文献   

9.
The structural reliability of many brittle materials such as structural ceramics relies on the occurrence of intergranular, as opposed to transgranular, fracture in order to induce toughening by grain bridging. For a constant grain boundary strength and grain boundary toughness, the current work examines the role of grain strength, grain toughness, and grain angle in promoting intergranular fracture in order to maintain such toughening. Previous studies have illustrated that an intergranular path and the consequent grain bridging process can be partitioned into five distinct regimes, namely: propagate, kink, arrest, stall, and bridge. To determine the validity of the assumed intergranular path, the classical penetration/deflection problem of a crack impinging on an interface is re-examined within a cohesive zone framework for intergranular and transgranular fracture. Results considering both modes of propagation, i.e., a transgranular and intergranular path, reveal that crack-tip shielding is a natural outcome of the cohesive zone approach to fracture. Cohesive zone growth in one mode shields the opposing mode from the stresses required for cohesive zone initiation. Although stable propagation occurs when the required driving force is equivalent to the toughness for either transgranular or intergranular fracture, the mode of propagation depends on the normalized grain strength, normalized grain toughness, and grain angle. For each grain angle, the intersection of single path and multiple path solutions demarcates “strong” grains that increase the macroscopic toughness and “weak” grains that decrease it. The unstable transition to intergranular fracture reveals that an increasing grain toughness requires a growing region of the transgranular cohesive zone be near the cohesive strength. The inability of the body to provide the requisite stress field yields an overdriven and unstable configuration. The current results provide restrictions for the achievement of substantial toughening through intergranular fracture.  相似文献   

10.
This study of the dynamic compressive strength properties of metal foams is in two parts. Part I presents data from an extensive experimental study of closed-cell Hydro/Cymat aluminium foam, which elucidates a number of key issues and phenomena. Part II focuses on modelling issues.The dynamic compressive response of the foam was investigated using a direct-impact technique for a range of velocities from 10 to . Elastic wave dispersion and attenuation in the pressure bar was corrected using a deconvolution technique.A new method of locating the point of densification in the nominal stress-strain curves of the foam is proposed, which provides a consistent framework for the definition of the plateau stress and the densification strain, both essential parameters of the ‘shock’ model in Part II. Data for the uniaxial, plastic collapse and plateau stresses are presented for two different average cell sizes of approximately 4 and 14 mm. They show that the plastic collapse strength of the foam changes significantly with compression rate. This phenomenon is discussed, and the distinctive roles of microinertia and ‘shock’ formation are described. The effects of compression rates on the initiation, development and distribution of cell crushing are also examined. Tests were carried out to examine the effects of density gradient and specimen gauge length at different rates of compression and the results are discussed. The origin of the conflicting conclusions in the literature on the correlation between nominal strain rate (ratio of the impact velocity Vi to the initial gauge length lo of the specimen) and the dynamic strength of aluminium alloy foams is identified and explained.  相似文献   

11.
Prior experiments have revealed exceptionally high values of the work of fracture (0.4-) in carbon/epoxy 3D interlock woven composites. Detailed destructive examination of specimens suggested that much of the work of fracture arose when the specimens were strained well beyond the failure of individual tows yet still carried loads . A mechanism of lockup amongst broken tows sliding across the final tensile fracture surface was suggested as the means by which high loads could still be transferred after tow failure. In this paper, the roles of weave architecture and the distribution of flaws in the mechanics of tow lockup are investigated by Monte Carlo simulations using the so-called Binary Model. The Binary Model was introduced previously as a finite element formulation specialised to the problem of simulating relatively large, three-dimensional segments of textile composites, without any assumption of periodicity or other symmetry, while preserving the architecture and topology of the tow arrangement. The simulations succeed in reproducing all qualitative aspects of measured stress-strain curves. They reveal that lockup can indeed account for high loads being sustained beyond tow failure, provided flaws in tows have certain spatial distributions. The importance of the interlock architecture in enhancing friction by holding asperities on sliding fibre tows into firm contact is highlighted.  相似文献   

12.
The purpose of this paper is to determine , the overall homogenized Love-Kirchhoff strength domain of a rigid perfectly plastic multi-layered plate, and to study the relationship between the 3D and the homogenized Love-Kirchhoff plate limit analysis problems. In the Love-Kirchhoff model, the generalized stresses are the in-plane (membrane) and the out-of-plane (flexural) stress field resultants. The homogenization method proposed by Bourgeois [1997. Modélisation numérique des panneaux structuraux légers. Ph.D. Thesis, University Aix-Marseille] and Sab [2003. Yield design of thin periodic plates by a homogenization technique and an application to masonry wall. C. R. Méc. 331, 641-646] for in-plane periodic rigid perfectly plastic plates is justified using the asymptotic expansion method. For laminated plates, an explicit parametric representation of the yield surface is given thanks to the π-function (the plastic dissipation power density function) that describes the local strength domain at each point of the plate. This representation also provides a localization method for the determination of the 3D stress components corresponding to every generalized stress belonging to . For a laminated plate described with a yield function of the form , where σu is a positive even function of the out-of-plane coordinate x3 and is a convex function of the local stress σ, two effective constants and a normalization procedure are introduced. A symmetric sandwich plate consisting of two Von-Mises materials ( in the skins and in the core) is studied. It is found that, for small enough contrast ratios (), the normalized strength domain is close to the one corresponding to a homogeneous Von-Mises plate [Ilyushin, A.-A., 1956. Plasticité. Eyrolles, Paris].  相似文献   

13.
14.
Test results for critical local fracture stresses are analysed statistically for both “as-received” and “degraded” pressure-vessel weld metal. The values were determined from the fracture loads of blunt-notch four-point-bend specimens fractured over a range of low test temperatures, making use of results from a finite-element stress analysis of the stress-strain distributions ahead of the notch root. The “degraded” material tested in this work has been austenitized at a high temperature, followed by both prestraining and temper embrittlement. This has led to a situation in which the fracture stress for the “degraded” material is reduced significantly below that for the “as-received” material. The fracture mechanisms are different in that the “degraded” material shows evidence of intergranular fracture as well as cleavage fracture (in coarse grain size) whereas the “as-received” material shows only cleavage fracture (in fine grain size). The critical stress (σF) distributions plotted on normal probability paper show that the experimental cumulative distribution function (CDF) is linear for each condition with different mean values: for “as-received” material and for “degraded” material. The values of standard deviation are small and almost identical (33-). The decrease of the local fracture stress after degradation is related to the local fracture micro-mechanisms. Statistical analysis of the results for the two conditions supports the hypothesis that the values of σF are essentially single valued, within random experimental errors. A similar analysis of the data treating both conditions as a single population reveals some interesting points relating to statistical modelling and lower-bound estimation for mechanical properties. Comparisons are made with Weibull analysis of the data. A further conclusion is that it is extremely important to base any statistical model on inferences drawn from micro-mechanical modelling of processes, and that examination of “normal” CDFs can often provide good indications of when it is necessary to subject data to further statistical and physical analysis.  相似文献   

15.
A systematic study of failure initiation in small-scale specimens has been performed to assess the effect of size scale on “failure properties” by drawing on the classical analysis of elliptically perforated specimens. Limitations imposed by photolithography restricted the minimum radii of curvature of the specimen perforations to one micron. By varying the radius of curvature and the size of the ellipses, the effects of domain size and stress concentration amplitude could be assessed separately to the point where the size of individual grains becomes important. The measurements demonstrate a strong influence of the domain size under elevated stress on the “failure strength” of MEMS scale specimens, while the amplitude, or the variation, of the stress concentration factor is less significant. In agreement with probabilistic considerations of failure, the “local failure strength” at the root of a notch clearly increases as the radius of curvature becomes smaller. Accordingly, the statistical scatter also increases with decreasing size of the (super)stressed domain. When the notch radius becomes as small as the failure stress increases on average by a factor of two relative to the tension values derived from unnotched specimens. This effect becomes moderate for larger radii of curvature, up to a radius of (25 times the grain size), for which the failure stress at the notch tip closely approaches the value of the tensile strength for un-notched tensile configurations. We deduce that standard tests, performed on micron-sized, non-perforated, tension specimens, provide conservative strength values for design purposes. In addition, a Weibull analysis shows for surface-micromachined specimens a dependence of the strength on the specimen length, rather than the surface area or volume, which implies that the sidewall geometry, dimensions and surface conditions can dominate the failure process.  相似文献   

16.
17.
18.
19.
20.
The complementary energy momentum tensor, expressed in terms of the spatial gradients of stress and couple-stress, is used to construct the and conservation integrals of infinitesimal micropolar elasticity. The derived integrals are related to the release rates of the complementary potential energy associated with a defect translation or rotation. A nonconserved integral is also derived and related to the energy release rate that is associated with a self-similar cavity expansion. The results are compared to those obtained on the basis of the classical energy momentum tensor, expressed in terms of the spatial gradients of displacement and rotation, and the release rates of the potential energy. It is shown that the evaluation of the complementary conservation integrals is of similar complexity to that of the classical conservation integrals, so that either can be effectively used in the energetic analysis of the mechanics of defects. The two-dimensional versions of the dual conservation integrals are then derived and applied to an out-of-plane shearing of a long cracked slab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号