首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The well-known increase of the decoherence rate with the temperature, for a quantum system coupled to a linear thermal bath, no longer holds for a different bath dynamics. This is shown by means of a simple classical nonlinear bath, as well as a quantum spin-boson model. The anomalous effect is due to the temperature dependence of the bath spectral profile. In the case of the second model, a link with the quantum Zeno effect is provided. The decoherence reduction via the temperature increase can be relevant for the design of quantum computers.  相似文献   

2.
Starting from the formal solution to the Heisenberg equation, we revisit an universal model for a quantum open system with a harmonic oscillator linearly coupled to a boson bath. The analysis of the decay process for a Fock state and a coherent state demonstrate that this method is very useful in dealing with the problems in decay process of the open system. For finite temperatures, the calculations of the reduced density matrix and the mean excitation number for the open system show that an initial coherent state will evolve into a temperature-dependant coherent state after tracing over the bath variables. Also in short-time limit, a temperature-dependant effective Hamiltonian for the open system characterizes the decay process of the open system.  相似文献   

3.
Starting from the formal solution to the Heisenberg equation, we revisit an universal model for a quantum open system with a harmonic oscillator linearly coupled to a boson bath. The analysis of the decay process for a Fock state and a coherent state demonstrate that this method is very useful in dealing with the problems in decay process of the open system. For finite temperatures, the calculations of the reduced density matrix and the mean excitation number for the open system show that an initial coherent state will evolve into a temperature-dependant coherent state after tracing over the bath variables. Also in short-time limit, a temperature-dependant effective Hamiltonian for the open system characterizes the decay process of the open system.  相似文献   

4.
A new model of a small open quantum system (swing or fish-trap model) is presented and solved. Analysis of the Hamiltonian as well as quantum solution shows that the model yields pumping of particles (ions, electrons) from one to another side preserving or even slightly increasing (on account of energy of the infinite thermodynamic bath) the mean particle energy. The effect reminds of the Maxwell daemon (working here, however, in isothermal conditions) and is due to a combination of a fast relaxation of the scatterer (central system) in intermediate states owing to its coupling to the thermodynamic bath with a special type of its instability in the intermediate state.  相似文献   

5.
The dynamics of the strong coupling BCS model, considered as an open system interacting with a thermal bath, is solved rigorously and explicitly in the weak coupling limit and in the infinite-volume limit. The BCS system goes from the normal phase to the ordered phase by bifurcation. Fluctuations around trajectories of intensive observables are Gaussian and Markovian. Thermodynamic phases are global attractors in the physical domain. Structural stability is discussed. The model provides an example of a nonequilibrium statistical mechanical system with phase transition whose irreversible macroscopic dynamics can be calculated exactly from the underlying Hamiltonian quantum mechanics.  相似文献   

6.
For one open quantum system recently reported to work as a perpetuum mobile of the second kind, basic equations providing basis for discussion of physics beyond the system activity are rederived in an appreciably simpler manner. The equations become exact in one specific scaling limit corresponding to the physical regime where internal processes (relaxations) in the system are commensurable or even slower than relaxation processes induced by bath. In the high-temperature (i.e. classical) limit, the system ceases to work, i.e., validity of the second law is reestablished.  相似文献   

7.
A model of an open quantum system is presented which is argued to be able to pump particles to states with even higher site energy on account of that of the thermodynamic bath.  相似文献   

8.
V. pek  J. Bok 《Physica A》2001,290(3-4)
One of the previously reported linear models of open quantum systems (interacting with a single thermal bath but otherwise not aided from outside) endowed with the faculty of spontaneous self-organization challenging standard thermodynamics is reconstructed here. It is then able to produce, in a cyclic manner, a useful (this time mechanical) work at the cost of just thermal energy in the bath whose quanta get properly in-phased. This means perpetuum mobile of the second kind explicitly violating the second law in its Thomson formulation. No approximations can be made responsible for the effect as a special scaling procedure is used that makes the chosen kinetic theory exact. The effect is purely quantum and disappears in the classical limit.  相似文献   

9.
10.
Optimising open quantum system evolution is an important step on the way to achieving quantum computing and quantum thermodynamic tasks. In this article, we approach optimisation via variational principles and derive an open quantum system variational algorithm explicitly for Lindblad evolution in Liouville space. As an example of such control over open system evolution, we control the thermalisation of a qubit attached to a thermal Lindbladian bath with a damping rate γ. Since thermalisation is an asymptotic process and the variational algorithm we consider is for fixed time, we present a way to discuss the potential speedup of thermalisation that can be expected from such variational algorithms.  相似文献   

11.
Using the expression of the fidelity for the most general Gaussian quantum states, the quantum fidelity is studied for the states of a harmonic oscillator interacting with an environment, in particular with a thermal bath. The time evolution of the considered system is described in the framework of the theory of open systems based on quantum dynamical semigroups. By taking a correlated squeezed Gaussian state as initial state, we calculate the quantum fidelity for both undisplaced and displaced states. The time evolution of the quantum fidelity is analyzed depending on the squeezing and correlation parameters characterizing the initial Gaussian state and on the dissipation constant and temperature of the thermal bath.  相似文献   

12.
《Physica A》1995,214(4):560-583
We discuss quantum decoherence in an open system which couples with a non-linear environment with finite degrees of freedom. Even if the degrees of freedom of the environment are finite, the strong non-linearity of the environment is expected to destroy quantum coherence of the open system like a heat bath with infinite degrees of freedom. In order to demonstrate this fact, we use two-dimensional kicked rotors as the environment and investigate a master equation for a reduced density matrix which is obtained by coarse-graining the environmental degrees of freedom. Our numerical simulation shows that when the non-linearity of the environment exceeds a critical strength, quantum coherence of the open system is irreversibly destroyed. This decoherence is due to the uncorrelated response of the environment to the open system and is related to the chaotic property of the non-linear environment.  相似文献   

13.
景俊  马红孺 《中国物理》2007,16(6):1489-1504
The dynamics of two coupled spins-1/2 coupled to a spin-bath is studied as an extended model of the Tessieri--Wilkie Hamiltonian. The pair of spins served as an open subsystem is prepared in one of the Bell states and the bath consisting of some spins-1/2 is in a thermal equilibrium state from the very beginning. It is found that with increasing coupling strength of the bath spins, the bath forms a resonant antiferromagnetic order. The polarization correlation between the two spins of the subsystem and the concurrence of it are recovered to some extent in the isolated subsystem. This suppression of the subsystem decoherence may be used to control the quantum devices in practical applications.  相似文献   

14.
We present a generalization of the recently developed dual‐fermion approach introduced for correlated lattices to non‐equilibrium problems. In its local limit, the approach has been used to devise an efficient impurity solver, the superperturbation solver for the Anderson impurity model (AIM). Here we show that the general dual perturbation theory can be formulated on the Keldysh contour. Starting from a reference Hamiltonian system, in which the time‐dependent solution is found by exact diagonalization, we make a dual perturbation expansion in order to account for the relaxation effects from the fermionic bath. Simple test results for closed as well as open quantum systems in a fermionic bath are presented.  相似文献   

15.
We consider a single harmonic oscillator coupled to a bath at zero temperature. As is well-known, the oscillator then has a higher average energy than that given by its ground state. Here we show analytically that for a damping model with arbitrarily discrete distribution of bath modes and damping models with continuous distributions of bath modes with cut-off frequencies, this excess energy is less than the work needed to couple the system to the bath, therefore, the quantum second law is not violated. On the other hand, the second law may be violated for bath modes without cut-off frequencies, which are, however, physically unrealistic models. An erratum to this article is available at .  相似文献   

16.
Within the framework of the Lindblad theory for open quantum systems, we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system manifests a quantum decoherence which is more and more significant in time. We also calculate the decoherence time scale and analyze the transition from quantum to classical behavior of the considered system. The text was submitted by the author in English.  相似文献   

17.
18.
In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence and classical correlations of a harmonic oscillator interacting with a thermal bath. The transition from quantum to classical behaviour of the considered system is analysed and it is shown that the classicality takes place during a finite interval of time. We calculate also the decoherence time and show that it has the same scale as the time after which statistical fluctuations become comparable with quantum fluctuations.  相似文献   

19.
The Schrödinger–Langevin equation (SLE) is considered as an effective open quantum system formalism suitable for phenomenological applications involving a quantum subsystem interacting with a thermal bath. We focus on two open issues relative to its solutions: the stationarity of the excited states of the non-interacting subsystem when one considers the dissipation only and the thermal relaxation toward asymptotic distributions with the additional stochastic term. We first show that a proper application of the Madelung/polar transformation of the wave function leads to a non zero damping of the excited states of the quantum subsystem. We then study analytically and numerically the SLE ability to bring a quantum subsystem to the thermal equilibrium of statistical mechanics. To do so, concepts about statistical mixed states and quantum noises are discussed and a detailed analysis is carried with two kinds of noise and potential. We show that within our assumptions the use of the SLE as an effective open quantum system formalism is possible and discuss some of its limitations.  相似文献   

20.
The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号