首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A novel method is described for measuring the deformability of red blood cells (RBCs) in tubing whose diameters approximate forces encountered in vivo. Here, RBCs from rabbits are loaded into a 50 cm section of 75 microm id microbore tubing and connected to a syringe pump. This section of tubing is then connected to a 15 cm section of 25 microm id tubing. As buffer is pumped through the flow system, the RBCs are evacuated from both sections of tubing. However, the inability of the RBCs to move freely through the 25 mirom id section of tubing results in a buildup of cells at the inlet of this portion of tubing. The continued force output by the syringe pump results in a deformation of the RBCs until all of the cells are eventually evacuated from the flow system. It was found that a measurement of the time required to reach half of the maximum pressure (1/2 P(max)) may be used as an indicator of the RBC deformability. For a given sample, a simple buffer results in less time to reach 1/2 P(max) (6.9 +/- 0.2 s) than deformable RBCs (21.6 +/- 0.8 s). To verify that the increased amount of time to reach 1/2 P(max) is indeed due to the RBCs, various hematocrits of an RBC sample were investigated and, as expected, it was found that a 12% RBC hematocrit had a higher 1/2 P(max) value (26.0 s +/- 2.2 s) when compared to a 7% hematocrit (19.1 +/- 0.3 s). In addition, RBCs chemically stiffened with glutaraldehyde were shown to be 25% less deformable than normal RBCs. Finally, a study was performed to examine the relationship between RBC deformability and ATP release and it was found that ATP release increased as a function of RBC deformability. This method greatly simplifies deformability measurements, employing only a syringe pump and microbore tubing, and may lead to a more complete understanding of the physiological significance of erythrocyte deformability.  相似文献   

2.
Zheng Y  Shojaei-Baghini E  Azad A  Wang C  Sun Y 《Lab on a chip》2012,12(14):2560-2567
This paper reports a microfluidic system for biophysical characterization of red blood cells (RBCs) at a speed of 100-150 cells s(-1). Electrical impedance measurement is made when single RBCs flow through a constriction channel that is marginally smaller than RBCs' diameters. The multiple parameters quantified as mechanical and electrical signatures of each RBC include transit time, impedance amplitude ratio, and impedance phase increase. Histograms, compiled from 84,073 adult RBCs (from 5 adult blood samples) and 82,253 neonatal RBCs (from 5 newborn blood samples), reveal different biophysical properties across samples and between the adult and neonatal RBC populations. In comparison with previously reported microfluidic devices for single RBC biophysical measurement, this system has a higher throughput, higher signal to noise ratio, and the capability of performing multi-parameter measurements.  相似文献   

3.
Malaria resulting from Plasmodium falciparum infection is a major cause of human suffering and mortality. Red blood cell (RBC) deformability plays a major role in the pathogenesis of malaria. Here we introduce an automated microfabricated "deformability cytometer" that measures dynamic mechanical responses of 10(3) to 10(4) individual RBCs in a cell population. Fluorescence measurements of each RBC are simultaneously acquired, resulting in a population-based correlation between biochemical properties, such as cell surface markers, and dynamic mechanical deformability. This device is especially applicable to heterogeneous cell populations. We demonstrate its ability to mechanically characterize a small number of P. falciparum-infected (ring stage) RBCs in a large population of uninfected RBCs. Furthermore, we are able to infer quantitative mechanical properties of individual RBCs from the observed dynamic behavior through a dissipative particle dynamics (DPD) model. These methods collectively provide a systematic approach to characterize the biomechanical properties of cells in a high-throughput manner.  相似文献   

4.
Gerhardt T  Woo S  Ma H 《Lab on a chip》2011,11(16):2731-2737
We present the design of a microchannel with dynamic geometry that imparts different flow rates to different cells based on their physical properties. This dynamic microchannel is formed between a textured surface and a flexible membrane. As cells flow through the microchannel, the height of the channel oscillates causing periodic entrapment of the larger cells, and as a result, attenuating their velocity relative to the bulk liquid. The smaller cells are not slowed by the moving microstructure, and move synchronously with the bulk liquid. The ability of the dynamic microchannel to selectively attenuate the flow rate of eukaryotic cells is similar to a size-exclusion chromatography column, but with the opposite behavior. The speed of smaller substances is attenuated relative to the larger substances in traditional size-exclusion chromatography columns, whereas the speed of the larger substances that is attenuated in the dynamic microchannel. We verified this property by tracking the flow of single cells through the dynamic microchannel. L1210 mouse lymphoma cells (MLCs), peripheral blood mononuclear cells (PBMCs), and red blood cells (RBCs) were used as model cells. We showed that the flow rate of MLC is slowed by more than 50% compared to PBMCs and RBCs. We characterized the operation of the microchannel by measuring the velocity of each of the three cell types as a function of the pressures used to oscillate the membrane position, as well as the duty cycle of the oscillation.  相似文献   

5.
In this paper, a novel mathematical approach is devised to analyze the flow of blood from a droplet into a microcapillary channel. Special attention is devoted to estimate the effects of variable hydraulic resistance over different flow regimes, influence of suspended RBC particulates on the non-Newtonian flow characteristics and implications of a dynamically-evolving contact angle. Flow characteristics depicting advancement of the fluid within the microfluidic channel turn out to be typically non-linear, as per relative instantaneous strengths of the capillary forces and viscous resistances. It is found that the greater the 'pseudoplasticity' of the blood, the weaker the retarding shear forces. The driving forces, on the other hand, become stronger with time, on account of a reduction of contact angle with a decrease of blood flow velocity, although this strengthening is less prominent for blood samples with greater 'pseudoplasticity'. It is revealed that RBCs suspended in blood samples have a strong influence on the effective blood viscosity, and consequently, may drive the fluid significantly faster into the microchannel, especially when the characteristic length scales of the suspensions approach the hydraulic radius of the channel.  相似文献   

6.
Laser photophoretic migration behavior of human blood cells in saline solution was investigated under the irradiation of Nd:YAG laser beam (532 nm) in the absence and the presence of the flow in a fused silica capillary. Red blood cells (RBC) were migrated faster than white blood cells (WBC) and blood pellets to the direction of propagation of laser light. The observed photophoretic velocity of RBC was about 11 times faster than those of others. This was understood from the larger photophoretic efficiency of RBC than that of WBC, which was simulated based on the Mie scattering theory. Furthermore, it was found that, during the photophoretic migration, RBCs spontaneously orientated parallel to the migration direction so as to reduce the drag force. Finally, it was demonstrated that RBC and WBC were separated in a micro-channel flow system by the laser photophoresis.  相似文献   

7.
The deformability of red blood cells (RBCs) is an important property that allows the cells to squeeze through small capillary vessels and can be used as an indicator for disease. We present a microfluidic based technique to quantify the deformability of RBCs by stretching a collection of RBCs on a timescale of tens of microseconds in a microfluidic chamber. This confinement constrains the motion of the cell to the imaging plane of the microscope during a transient cavitation bubble event generated with a focused and pulsed laser. We record and analyze the shape recovery of the cells with a high-speed camera and obtain a power law in time, consistent with other dynamic rheological results of RBCs. The extracted exponents are used to characterize the elastic properties of the cells. We obtain statistically significant differences of the exponents between populations of untreated RBCs and RBCs treated with two different reagents: neuraminidase reduces the cell rigidity, while wheat germ agglutinin stiffens the cell confirming previous experiments. This cavitation based technique is a candidate for high-throughput screening of elastic cell properties because many cells can be probed simultaneously in situ, thus with no pre-treatment.  相似文献   

8.
Emerging applications of rare cell separation and analysis, such as separation of mature red blood cells from hematopoietic cell cultures, require efficient methods of red blood cell (RBC) debulking. We have tested the feasibility of magnetic RBC separation as an alternative to centrifugal separation using an approach based on the mechanism of magnetic field-flow fractionation (MgFFF). A specially designed permanent magnet assembly generated a quadrupole field having a maximum field of 1.68 T at the magnet pole tips, zero field at the aperture axis, and a nearly constant radial field gradient of 1.75 T/mm (with a negligible angular component) inside a cylindrical aperture of 1.9 mm (diameter) and 76 mm (length). The cell samples included high-spin hemoglobin RBCs obtained by chemical conversion of hemoglobin to methemoglobin (met RBC) or by exposure to anoxic conditions (deoxy RBC), low-spin hemoglobin obtained by exposure of RBC suspension to ambient air (oxy RBC), and mixtures of deoxy RBC and cells from a KG-1a white blood cell (WBC) line. The observation that met RBCs did not elute from the channel at the lower flow rate of 0.05 mL/min applied for 15 min but quickly eluted at the subsequent higher flow rate of 2.0 mL/min was in agreement with FFF theory. The well-defined experimental conditions (precise field and flow characteristics) and a well-established FFF theory verified by studies with model cell systems provided us with a strong basis for making predictions about potential practical applications of the magnetic RBC separation.
Figure
Red blood cell MgFFF fractograms are function of hemoglobin oxidation  相似文献   

9.
10.
Yang Y  Koo S  Xia Y  Venkatraman S  Neu B 《Chemphyschem》2011,12(16):2989-2994
Red blood cell (RBC) adhesion to the endothelium is usually insignificant. However, an enhanced adhesion can be observed in various pathological conditions such as diabetes mellitus or sickle cell disease, which is often accompanied by elevated levels of pro-adhesive plasma proteins such as fibrinogen. In the past, these proteins have only been considered to act as ligands, cross-linking the corresponding receptors on adjacent cells, but the detailed underlying mechanism often remained obscure. This work demonstrates that the presence of non-adsorbing polymers in plasma can also enhance the adhesion efficiency of RBCs to endothelial cells (ECs) through depletion interaction. Furthermore, adhesion of RBCs to ECs may be likewise promoted by the protein fibrinogen through depletion interaction. We propose an alternative mechanism for the pro-adhesive effects of plasma proteins and indicate that depletion interaction might play a significant role for the stabilization and destabilization of blood flow in health and disease.  相似文献   

11.
The culture of cells in a microbioreactor can be highly beneficial for cell biology studies and tissue engineering applications. The present work provides new insights into the relationship between cell growth, cell morphology, perfusion rate, and design parameters in microchannel bioreactors. We demonstrate the long-term culture of mammalian (human foreskin fibroblasts, HFF) cells in a microbioreactor under constant perfusion in a straightforward simple manner. A perfusion system was used to culture human cells for more than two weeks in a plain microchannel (130 microm x 1 mm x 2 cm). At static conditions and at high flow rates (>0.3 ml h(-1)), the cells did not grow in the microchannel for more than a few days. For low flow rates (<0.2 ml h(-1)), the cells grew well and a confluent layer was obtained. We show that the culture of cells in microchannels under perfusion, even at low rates, affects cell growth kinetics as well as cell morphology. The oxygen level in the microchannel was evaluated using a mass transport model and the maximum cell density measured in the microchannel at steady state. The maximum shear stress, which corresponds to the maximum flow rate used for long term culture, was 20 mPa, which is significantly lower than the shear stress cells may endure under physiological conditions. The effect of channel size and cell type on long term cell culture were also examined and were found to be significant. The presented results demonstrate the importance of understanding the relationship between design parameters and cell behavior in microscale culture system, which vary from physiological and traditional culture conditions.  相似文献   

12.
An isocratic high-performance liquid chromatographic method coupled to tandem mass spectrometry for the quantification of the revolutionary and promising anticancer agent STI-571 (tradenames Gleevec, Glivec, Imatinib) in blood plasma and red blood cells (RBCs) is described. The method involves measurement of sediment technology for RBCs and a subsequent single protein precipitation step by the addition of acetonitrile to both the RBC isolate and plasma. The sample mixture was centrifuged (10 min, 3600 g), and the supernatant filtered through a HPLC filter (0.45 microm). The analytes of interest, STI-571 and the internal standard [2H8]STI-571 were eluted on a Waters Symmetry C18 column (50x2.1 mm I.D., 3.5 microm particle size) using a methanol-0.05% ammonium acetate (72:28, v/v) mixture. STI-571 and [2H8]STI-571 were detected by electrospray tandem mass spectrometry in the positive mode, and monitored in the multiple reaction monitoring transitions 494>394 and 502<394, respectively. The lower limit of quantitation of STI-571 was 2.1 ng/ml in RBCs and 1.8 ng/ml in plasma. The recovery from both plasma and RBCs was between 65 and 70%. The method proved to be robust, allowing simultaneous quantification of STI-571 in RBCs and plasma with sufficient precision, accuracy and sensitivity and is useful in monitoring the fate of this signal transduction inhibitor in whole blood of cancer patients.  相似文献   

13.
The ability to transport and store a large human blood inventory for transfusions is an essential requirement for medical institutions. Thus, there is an important need for rapid and low-cost characterization tools for analyzing the properties of human red blood cells (RBCs) while in storage. In this study, we investigate the ability to use dielectrophoresis (DEP) for measuring the storage-induced changes in RBC electrical properties. Fresh human blood was collected, suspended in K2-EDTA anticoagulant, and stored in a blood bank refrigerator for a period of 20 days. Cells were removed from storage at 5-day intervals and subjected to a glutaraldehyde crosslinking reaction to “freeze” cells at their ionic equilibrium at that point in time and prevent ion leakage during DEP analysis. The DEP behavior of RBCs was analyzed in a high permittivity DEP buffer using a three-dimensional DEP chip (3DEP) and also compared to measurements taken with a 2D quadrupole electrode array. The DEP analysis confirms that RBC electrical property changes occur during storage and are only discernable with the use of the cell crosslinking reaction above a glutaraldehyde fixation concentration of 1.0 w/v%. In particular, cytoplasm conductivity was observed to decrease by more than 75% while the RBC membrane conductance was observed to increase by more than 1000% over a period of 20 days. These results show that the presented combination of chemical crosslinking and DEP can be used as rapid characterization tool for monitoring electrical properties changes of human RBCs while subjected to refrigeration in blood bank storage.  相似文献   

14.
Electrokinetic flow of a suspension of erythrocytes (red blood cells, RBCs) in 20 num cylindrical fused-silica capillaries is examined in the present work. Flow direction anomalies are observed experimentally and tentatively explained by the development of a pH gradient between the cathode well and the anode well due to electrolysis reactions at the electrodes. This pH gradient alters the local zeta potentials of both the capillary and the RBC and thus the local electroendosmotic liquid flow (EOF) velocities and RBC electrophoretic (EP) velocities. The two velocities are opposite in direction but with EOF dominating such that the RBC moves toward the cathode, opposite to the anode migration observed in bulk conditions. The opposing zeta potentials also lead to RBC aggregation at the anode end for low fields less than 25 V/cm. As the electroendosmotic velocity decreases at the anode end due to decreasing pH, pressure-driven back flow develops to oppose the original EOF at the remaining portions of the capillary ensuring constant fluid flux. When the anode EOF velocity is smaller in magnitude than the EP velocity, reversal of blood cell transport is observed after a short transient time in which a pH gradient forms. RBC velocities and pH dependencies on electric field and MgCl(2) concentration are presented along with data showing the accumulation of charge separation across the capillary. Also, a short-term solution to the pH gradient formation is presented that could help thwart development of pH gradients in micro-devices at lower voltages.  相似文献   

15.
Analytical magnetapheresis is a newly developed technique for separating magnetically susceptible particles. The magnetically susceptible particles are deposited on a bottom plate after flowing through a thin (< 0.05 cm) separation channel under a magnetic field applied perpendicular to the flow. Particles with various magnetic susceptibilities can be selectively deposited and separated by adjusting the applying magnetic force and flow rates. Magnetic susceptibility is an important parameter for magnetic separation. Magnetic susceptibility determination of various ion-labeled red blood cells (RBCs) using analytical magnetapheresis with a simple theoretical treatment is reported in this study. Susceptibility determination is based on the balance between maximal channel flow rate and magnetically induced flow rate for deposition. We tried a new approach to determine particle magnetic susceptibilities using a balance of magnetic and drag forces to control magnetically induced particle velocities. The Er3+, Fe3+, Cu2+, Mn2+, Co2+, and Ni2+ ions were used to label RBC at various labeling concentrations for susceptibility determination. The susceptibilities determined for various ion-labeled RBC under two magnetic field intensities fell within a 10% range. The average viabilities of various ion-labeled RBCs were 96.1 +/- 0.8%. The susceptibility determination generally took less than 10 min. Determined susceptibilities from analytical magnetapheresis differed by 10% from reference measurements using a superconducting quantum interference device (SQUID) magnetometer. The cost and time for analysis is much less using analytical magnetapheresis. This technique can provide a simple, fast, and economical way for particle susceptibility determinations.  相似文献   

16.
Blood suspension fails to penetrate a capillary with radius R less than 50 microm even if the capillary is perfectly wettable. This invasion threshold is attributed to three red blood cells (RBCs) segregation mechanisms--corner deflection at the entrance, the intermediate deformation-induced radial migration and shear-induced diffusion within a packed slug at the meniscus. The shear-induced radial migration for deformable particles endows the blood cells with a higher velocity than the meniscus to form the concentrated slug behind the meniscus. This tightly packed slug has a higher resistance and arrests the flow. Rigid particles and rigidified blood cells result in wetting behavior similar to that seen for homogeneous liquids, with decreased RBC migration towards the capillary centerline and reduction of packing. Corner deflection with a radial drift velocity accelerates the radial migration for small capillaries. However, deformation-induced radial migration is the key mechanism responsible for penetration failure. This sequence of mechanisms is confirmed through videomicroscopy and scaling theories were applied to capture the dependence of the critical capillary radius as a function of RBC concentrations.  相似文献   

17.
Besides human red blood cells (RBC), a standard model used in AFM-single cell force spectroscopy (SCFS), little is known about apparent Young’s modulus (Ea) or adhesion of animal RBCs displaying distinct cellular features. To close this knowledge gap, we probed chicken, horse, camel, and human fetal RBCs and compared data with human adults serving as a repository for future studies. Additionally, we assessed how measurements are affected under physiological conditions (species-specific temperature in autologous plasma vs. 25 °C in aqueous NaCl solution). In all RBC types, Ea decreased with increasing temperature irrespective of the suspension medium. In mammalian RBCs, adhesion increased with elevated temperatures and scaled with reported membrane sialic acid concentrations. In chicken only adhesion decreased with higher temperature, which we attribute to the lower AE-1 concentration allowing more membrane undulations. Ea decreased further in plasma at every test temperature, and adhesion was completely abolished, pointing to functional cell enlargement by adsorption of plasma components. This halo elevated RBC size by several hundreds of nanometers, blunted the thermal input, and will affect the coupling of RBCs with the flowing plasma. The study evidences the presence of a RBC surface layer and discusses the tremendous effects when RBCs are probed at physiological conditions.  相似文献   

18.
Plasma protein-mediated attractive interaction between membranes of red blood cells (RBCs) and phospholipid vesicles was studied. It is shown that beta(2)-glycoprotein I (beta(2)-GPI) may induce RBC discocyte-echinocyte-spherocyte shape transformation and subsequent agglutination of RBCs. Based on the observed beta(2)-GPI-induced RBC cell shape transformation it is proposed that the hydrophobic portion of beta(2)-GPI molecule protrudes into the outer lipid layer of the RBC membrane and increases the area of this layer. It is also suggested that the observed agglutination of RBCs is at least partially driven by an attractive force which is of electrostatic origin and depends on the specific molecular shape and internal charge distribution of membrane-bound beta(2)-GPI molecules. The suggested beta(2)-GPI-induced attractive electrostatic interaction between like-charged RBC membrane surfaces is qualitatively explained by using a simple mathematical model within the functional density theory of the electric double layer, where the electrostatic attraction between the positively charged part of the first domains of bound beta(2)-GPI molecules and negatively charged glycocalyx of the adjacent RBC membrane is taken into account.  相似文献   

19.
Faris A  Spence DM 《The Analyst》2008,133(5):678-682
It is known that adenosine triphosphate (ATP) is released from red blood cells (RBCs) due to various forms of stimulation such as deformation, pharmacological stimuli, and hypoxia. To date, these various stimuli have been investigated individually. Here, we have combined a microflow system capable of initiating deformation-induced release of ATP from the RBCs at various levels of hypoxia as measured by percent oxygen saturation in the RBC sample. When values of ATP released from deformation and hypoxia are compared to values of ATP release due to hypoxia alone, the relationship between the two stimuli can be deduced. Measurement of RBC-derived ATP with the well-known chemiluminescence assay employing luciferin/luciferase indicates that RBCs deoxygenated for 4 min released 1.84 +/- 0.075 microM ATP. The largest decrease in oxygen saturation was found to be between 0 s (66.3% O(2) saturation) and 15 s (22.3% O(2) saturation). RBCs deoxygenated to a 22.3% O(2) saturation released 0.374 +/- 0.011 microM ATP when pumped through the microflow system. This value is an increase from 0.281 +/- 0.007 microM ATP in the presence of flow alone. The ATP release after exposure to hypoxia at 22.3% O(2) saturation was 0.381 +/- 0.014 microM ATP, a value statistically equivalent to that of hypoxia and flow combined. These data suggest that, at an oxygen saturation point of around 25.0% or above, deformation contributes to ATP release from the RBC; however, beyond this saturation point, the ATP release is largely due to hypoxia.  相似文献   

20.
To elucidate the protein–protein interactions of hemoglobin (Hb) variants A and A2, HbA was first shown to bind with HbA2 in live red blood cells (RBCs) by diagonal electrophoresis and then the interaction between HbA and HbA2 outside the RBC was shown by cross electrophoresis. The starch–agarose gel electrophoresis of hemolysate, RBCs, freeze‐thawed RBCs and the supernatant of freeze‐thawed RBCs showed that the interaction between HbA and HbA2 was affected by membrane integrity. To identify the proteins involved in the interaction, protein components located between HbA and HbA2 in RBCs (RBC HbA‐HbA2) and hemolysate (hemolysate HbA‐HbA2) were isolated from the starch–agarose gel and separated by 5–12% SDS‐PAGE. The results showed that there was a ≈22 kDa protein band located in the RBC HbA‐HbA2 but not in hemolysate HbA‐HbA2. Sequencing by LC/MS/MS showed that this band was a protein complex that included mainly thioredoxin peroxidase B, α‐globin, δ‐globin and β‐globin. Thus, using our unique in vivo whole blood cell electrophoresis release test, Hbs were proven for the first time to interact with other proteins in the live RBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号