首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A systematic study of the mesomorphic properties of three series of copper(II) complexes based on β-diketonate ligands containing branched side chains is reported. These disc-like compounds have four, six and eight flexible alkoxy side chains appended to the central core, in which two or four side chains were substituted by bulkier secondary alkoxy groups: 1-methylbutyloxy R ' = C5(2°) or 1-methylheptyloxy R ' = C8(2°). The mesomorphic results indicated that at least eight side chains are required to form stable columnar mesophases; other compounds with four or six side chains are not mesogenic regardless of the combination of the carbon length on the alkoxy or secondary alkoxy groups of the side chains. The compounds 3 with shorter R ' = C5(2°) side chains were all non-mesogenic regardless of the carbon length of three alkoxy side chains (R = C8, C10, C12) used. However, when the longer 1-methylheptyloxy side chain R ' = C8(2°) was substituted, the compounds 3b-3e with various alkoxy groups (R = C6, C7, C8, C10, C12) exhibited columnar phases. The mesophases were characterized and identified as columnar hexagonal phases (Colh), as expected, by thermal analysis and optical polarized microscopy. The presence of the introduced secondary alkoxy groups apparently appeared to influence the formation of columnar phases. The clearing points were relatively lower than other similar copper(II) compounds not substituted by secondary alkoxy side chains.  相似文献   

3.
The synthesis and structure of binuclear copper(II) complexes with acyldihydrazones of some β-diketones are described. The molecular structure of the copper(II) complex [Cu2L·4Py] with trifluoroacetylacetone succinyldihydrazone (H4L) was determined by the single-crystal X-ray analysis. Central atoms are bridged by a chain of seven σ-bonds with a Cu...Cu distance of 8.750 Å. EPR spectra of copper(II) complexes with acyldihydrazones of trifluoroacetylacetone and lower dicarboxylic acids containing from one to four methylene groups in the aliphatic spacer show the seven-line HFS due to spin-spin coupling of unpaired electrons with the two equivalent copper nuclei (g = 2.110, a = (38.5–40.5)⊙10?4 cm?1). By extending polymethylene spacer, as well as by modifying starting β-diketone, an exchange interaction between paramagnetic centers is suppressed.  相似文献   

4.
Summary Electron impact mass spectra of several bis(2-trifluoroacetylcycloalkanonato) copper(II) and bis(2-acetylcycloalkanonato) copper(II) chelates, in which the cyclic -diketonate moiety comprises five-, six-, seven-, and eight-membered ring systems, have been recorded. Compared with other copper(II) chelates of acyclic -diketonates, the present series of copper(II) cyclic -diketonates exhibited more pronounced intramolecular reduction reactions accompanied by a remarkably facile hydrogen migration resulting in the formation of the [LCu(I)-H]+ ion as the base peak in all complexes investigated. The proposed fragmentation pathways leading to the formation of a number of important copper-containing daughter ions have been confirmed by metastable scanning of the corresponding parent ion spectra using the defocusing technique.
Massenspektroskopische Fragmentierung von Kupfer(II)-Komplexen cyclischer -Diketone
Zusammenfassung Es wurden die EI-Massenspektren einiger Bis(2-trifluoracetylcycloalkanato)kupfer(II)-und Bis(2-acetylcycloalkanato)kupfer(II)-Chelate mit fünf-, sechs-, sieben- und achtgliedrigen cyclischen -Diketonat-Liganden gemessen. Im Vergleich zu anderen Kupfer(II)-Chelaten mit offenkettigen -Diketonaten zeigen die cyclischen Komplexe eine ausgeprägte Neigung zu intramolekularen Reduktionsreaktionen, die von einer bemerkenswert leicht erfolgenden Wasserstoffwanderung begleitet sind; dies führt zur Bildung von [LCu(I)-H]+ als Basispeak für alle untersuchten Komplexe. Die vorgeschlagenen Fragmentierungswege, die zur Bildung einer Reihe wichtiger kupferhaltiger Tochterionen führen, wurden durch Untersuchung der entsprechenden metastabilen Mutterionen mittels der Defokussierungsmethode überprüft.
  相似文献   

5.
The syntheses, crystal structures and spectroscopic properties of three Cu(II)–dipicolinate complexes with benzimidazole ligands, namely [Cu(bzim)(dipic)(MeOH)] (1), [Cu2(2-Etbzim)2(dipic)2]n·0.5nH2O (2) and [Cu2(2-iPrbzim)2(dipic)2]n (3), where dipic?=?dipicolinate, bzim?=?1-H-benzimidazole, 2-Etbzim?=?2-ethyl-1-H-benzimidazole and 2-iPrbzim?=?2-isopropyl-1-H-benzimidazole, are reported. Crystal structure studies revealed different coordination modes of the dipicolinate ligands; tridentate chelating for monomeric complex 1, and both tridentate chelating and bridging for similar polymeric complexes 2 and 3. Polymers 2 and 3 both contain two units, in which the Cu(II) central atoms Cu1 and Cu2 have different coordination polyhedra. The first unit {Cu(dipic)2} with Cu1 is connected to the second via two bidentate carboxylate groups of an μ3-bridging dipicolinate. In the second unit, Cu2 is coordinated by two imidazole nitrogen atoms from 2-ethyl-1-H-benzimidazole (2) or 2-isopropyl-1-H-benzimidazole (3) ligands. Complex 2 is of higher symmetry and has a localized Cu(II) atom Cu2 in a special position on the twofold axis. EPR spectra of all three Cu(II) complexes, which were measured at both room temperature and 98 K, indicate distorted tetragonal coordination spheres for all the Cu(II) atoms. The g-factor relation (g//>?g?>?2.0023) is consistent with a \(d_{{x^{2} - y^{2} }}\) ground electronic state in each case.  相似文献   

6.
The DNA-binding behaviors of the fluorescein?Cporphyrinatozinc(II) complex Zn(Fl-PPTPP) (Fl-PPTPP?=?5-(4-fluoresceinpropyloxy)phenyl-10,15,20-triphenylporphyrin) and fluorescein?Cporphyrinatocopper(II) complex Cu(Fl-PPTPP) with calf thymus DNA (CT-DNA) were investigated by UV?CVis absorption titrations, fluorescence spectra, viscosity measurements, thermal denaturation and circular dichroism. The results suggest that both complexes interact with CT-DNA by intercalation. In addition, their photocleavage reactions with pBR322 supercoiled plasmid DNA were investigated. Both complexes exhibit significant DNA cleavage activity, and singlet oxygen may play an important role in these reactions.  相似文献   

7.
Mono- and binuclear copper(II) complexes with atenolol (HAt) can be obtained, depending on the reaction conditions. The mononuclear violet complex cation has the general formula Cu(HAt)4 2+ with an elongated octahedral geometry. The two ligands in the equatorial plane are bound in a bidentate fashion through the hydroxyl oxygen and amino nitrogen, while the other two atenolol molecules in axial position are coordinated in a monodentate way. The binuclear green complex Cu2At2Cl2, is neutral, where atenolol acts as a bidentate (O, NH) bridging ligand. The bridge between the two Cu atoms is realized by the deprotonated oxygen of the alcohol group.  相似文献   

8.
The syntheses, characterization, and crystal structures of the reaction products of Cu2+ with imidazole (Himz) and different aromatic carboxylates, viz.: [Cu(Himz)2(cinn)2(H2O)] (1), [Cu(Himz)2(paba)2] (2) and [Cu(Himz)2(clba)2] (3) (cinn = C9H7O2, paba = C7H6NO2, clba = C7H4ClO2) are described and studied by spectroscopic (UV–visible, FTIR) measurements. Single-crystal X-ray diffraction analyses indicate that each complex is monomeric. The metal ion in 1 adopts square-pyramidal coordination geometry arising from two imidazole nitrogens, two cinnamate oxygens, and an apical aqua. The metal ions of 2 and 3, however, assume a square planar configuration, which is realized by coordination of two nitrogens of two imidazoles and two oxygens; in both complexes, the imidazole moieties are trans to each other. TGA results indicate that upon heating, these complexes lose their carboxylate anions first, followed by removal of the imidazole molecules.  相似文献   

9.
The coordination mode of thioether–pyrazole ligand, 1,5-bis(3,5-dimethyl-1-pyrazolyl)-3-thiapentane (bdtp) and 1,8-bis-(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo) ligands, in Pd(II) complexes containing a diphosphine ligand is determined by subtle changes in size of the bridge between the two phosphorus atoms. The 1H NMR and 31P{1H} NMR at variable temperature in acetonitrile solution prove that the hemilabile character of the bdtp ligand depend on the diphosphine ligand. Thus, while in [Pd(bdtp)(dppe)](BF4)2 [1](BF4)2 the thioether group not participate in the Pd(II) coordination sphere, two isomers with different coordination (P2N2 vs P2NS) are in equilibrium in [Pd(bdtp)(dppp)](BF4)2 [2](BF4)2 acetonitrile solution. For complexes [Pd(bddo)(dppe)](BF4)2 [3](BF4)2 and [Pd(bddo)(dppp)](BF4)2 [4](BF4)2, only the coordination N,N is observed.  相似文献   

10.
New N-substituted cyclam ligands 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-1,4,8,11-tetraazacyclotetradecane, 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane, 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-1,4,8,11-tetraazacyclotetradecane, and 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane (L1–L4) were synthesized and mononuclear copper(II) and nickel(II) complexes prepared. The ligands and complexes were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectral studies. N-alkylation causes red shifts in the λmax values of the complexes. Copper(II) complexes show one-electron, quasi-reversible reduction waves in the range ?1.04 to ?1.00 V. The nickel(II) complexes show one-electron, quasi-reversible reduction waves in the range ?1.18 to ?1.30 V and one-electron, quasi-reversible oxidation waves in the range +1.20 to +1.40 V. The reduction potential of the copper(II) and nickel(II) complexes of the ligands L1 to L2 and L3 to L4 shift anodically on N-alkylation. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment value μeff?=?1.70–1.74 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and on the hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalyst were carried out. The tetra-N-substituted complexes have higher rate constants than the corresponding disubstituted complexes.  相似文献   

11.
12.
The coordination mode of thioether–pyrazole ligand, 1,5-bis(3,5-dimethyl-1-pyrazolyl)-3-thiapentane (bdtp) and 1,8-bis-(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo) ligands, in Pd(II) complexes containing a diphosphine ligand is determined by subtle changes in size of the bridge between the two phosphorus atoms. The 1H NMR and 31P{1H} NMR at variable temperature in acetonitrile solution prove that the hemilabile character of the bdtp ligand depend on the diphosphine ligand. Thus, while in [Pd(bdtp)(dppe)](BF4)2 [1](BF4)2 the thioether group not participate in the Pd(II) coordination sphere, two isomers with different coordination (P2N2 vs P2NS) are in equilibrium in [Pd(bdtp)(dppp)](BF4)2 [2](BF4)2 acetonitrile solution. For complexes [Pd(bddo)(dppe)](BF4)2 [3](BF4)2 and [Pd(bddo)(dppp)](BF4)2 [4](BF4)2, only the coordination N,N is observed.  相似文献   

13.
Four complexes of the nuclear structure NiII–ZnII were prepared with bis-N,N′-(salicylidene)-1,3-propanediamine (LH2), bis-N,N′-(salicylidene)-2,2′-dimethyl-1,3-propanediamine (LDMH2) and the reduced derivatives of these Schiff bases, bis-N,N′-(2-hydroxybenzyl)-1,3-propanediamine (LHH2), bis-N,N′-(2-hydroxybenzyl)-2,2′-dimethyl-1,3-propanediamine (LDMHH2). The complexes were characterized using IR spectroscopy, elemental analysis and thermogravimetric methods. The stoichiometry of the complex molecules were found to be NiL·ZnCl2·(DMF)2, NiLDM·ZnCl2·(DMF)2, NiLH·ZnCl2·(DMF)2 and NiLDMH·ZnCl2·(DMF)2. The molecular models of the complexes prepared with the reduced Schiff bases were determined according to the X-ray diffraction method. It is seen that in these complexes Ni(II) is in octahedral and Zn(II) is in tetrahedral coordination sphere. Ni(II) ion is coordinated between two nitrogen and two oxygen donors of the ligand and oxygen donors of the two DMF molecules. Zn(II) ion on the other hand is coordinated between two oxygen of the organic ligand forming two μ bonds. It also coordinates two Cl ions. The thermogravimetric analysis showed that the complex NiLDMH·ZnCl2·(DMF)2 containing methyl groups is more stable than the other complex NiLH·ZnCl2·(DMF)2 containing reduced Schiff base. The coordinative DMF molecules in NiLDMH·ZnCl2·(DMF)2 were thermally cleaved. However, the cleavage of DMF molecules NiLH·ZnCl2·(DMF)2 resulted in the thermal degradation of the complex. In order to explain the TG data of the ligands were titrated in non-aqueous medium and their basicity strengths were determined. It was found that the basicity of the ligands containing two methyl groups were stronger. It is understood that the two methyl groups increase the negative charge density on nitrogen causing an increase in complex stability.  相似文献   

14.
Complexes ZnLCl2 (I) and [CdLCl2] n (IV), where L is chiral bis-pyridine containing fragments of natural monoterpenoide (–)-α-pinene are synthesized. Single crystals of [ZnLCl2]·CH2Cl2 (II), [ZnLCl2i-PrOH (III), and IV compounds are grown. The crystal structures of II and III are composed of mononuclear ZnLCl2 complex molecules and solvate CH2Cl2 and i-PrOH molecules; the coordination polyhedron of the zinc atom Cl2N2 is a distorted tetrahedron. According to the single crystal XRD data, complex IV is a 1D coordination polymer; the coordination core CdN2Cl4 is a distorted octahedron and Cl atoms are bridging ligands. In the structures of II, III, and IV the L molecule functions as a bidentate chelate ligand. In the solid phase, complexes I and IV exhibit photoluminescence in the visible range (λmax 505 nm and 460 nm respectively). The band intensity in the photoluminescence spectra of I and IV complexes considerably exceeds the band intensity in the spectrum of free L.  相似文献   

15.
Summary AgI and CuII complexes with 2,4-bipyridyl (2,4-bipy or L) with the general formulae AgL2X (where X = NO inf3 sup– or ClO4 -), CuL2X2·2H2O (X = Cl- or Br-), CuL4SO4·4H2O, CuL4(NO3)2·2H2O and CuL4(ClO4)2·H2O have been isolated pure and characterized by analytical, spectral and magnetic measurements. The thermal decomposition of these complexes was studied under non-isothermal conditions in air.  相似文献   

16.
Four novel copper(Ⅱ) complexes have been synthesized,namely Cu(hfac)2NITPhNO2 (1),Cu(hfac)2NITPhCH3 (2),Cu(pfpr)2NITPhNO2,(3) and Cu(Pfpr)2NITPhCH3 (4),where hfac= hexafluoro-acetylacetonate,pfpr=pentafluoropropionate,NITR.=2-R-4,4,5,5-tetraniethyl-4,5-dihydro-1H-imidazolyl-1-oxyl-3-oxide.(R=4-nitrophenyl,4-methylphenyl).These complexes were rharicter-ized by elemental analyses,IR,electronic spectra and molar conductance.The temperature-dependent magnetic susceptibility of complexes 1 and 3 have been studied in the 4 300 K range,giving I he exchange integral J=10.56 cm-1 for complex 1 and J =-30.9 cm-1 for complex 3.  相似文献   

17.
The new pyrazole ligand 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-phosphonic acid dimethyl ester (2a) has been used to obtain a series of platinum(II), palladium(II) and copper(II) complexes (3a7a) as potential anticancer compounds. The molecular structures of the platinum(II) and copper(II) complexes 3a and 6a have been determined by X-ray crystallography. The cytotoxicity of the phosphonic ligand 2a and its carboxylic analog 2b as well as their complexes has been evaluated on leukemia and melanoma cell lines. Copper(II) complexes were found to be more efficient in the induction of melanoma cell death than the platinum(II) or palladium(II) complexes. Cytotoxic effectiveness of compound 7b against melanoma WM-115 cells was two times better than that of cisplatin. The reaction of compound 5b with 9-methylguanine has been studied.  相似文献   

18.
Six new -oxamido heterobinuclear complexes, namely [Cu(oxap)Fe(L)2]SO4, where oxap denotes the N,N-bis(2-aminopropyl)oxamido dianion and L represents 1,10-phenanthroline (phen); 5-nitro-1,10-phenanthroline (NO2-phen); 5-chloro-1,10-phenanthroline (Cl-phen); 5-methyl-1,10-phenanthroline (Me-phen); 2,2-bipyridine (bpy); and 4,4-dimethyl-2,2-bipyridine (Me2bpy), have been synthesized and characterized by elemental analyses, i.r. spectra, electronic spectra, magnetic moments (at room temperature) and molar conductivity measurements. The temperature dependent magnetic susceptibilities of [Cu(oxap)Fe(bpy)2]SO4 (1) and [Cu(oxap)Fe(phen)2]SO4 (2) have been studied in the 4.2–300K range, giving the exchange integrals J=–20.9cm–1 for (1) and J=–22.5cm–1 for (2). These results are commensurate with antiferromagnetic interactions between adjacent metal ions within each molecule.  相似文献   

19.
Using the method of electron spectroscopy we showed that reaction of alkyl-substituted 2,2′-dipyrrolylmethene derivatives with copper(II) aminoacid complexes led to the formation of heteroligand complexes with two chelated metallocycles forming their coordination sphere. Formation constants of the heteroligand complexes were established and their interrelations with the structure of the aminoacid residue side group were elucidated. It was found that alongside the ability to the primary solvolytic dissociation of aminoacid complex, the main effect on the formation of combined coordination sphere of the chelate is defined by the steric factor depending on the structure of substituent in the aminoacid.  相似文献   

20.
Formation of ternary mixed-ligand complexes of copper (II) with 16 -amino acids and -aminophosphonic acids (APA) with a 111 ratio of initial concentrations has been studied by potentiometric titration at 25C and 0.1 M KC1 in aqueous solution. The complexes CupAnBsHq are formed in solution, where A and B are the deprotonated ligands. The stability of the mixed-ligand complexes (log ) increases and the equilibrium is displaced more towards their formation (log K) as the hydrophobic nature of the ligands increases.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 570–575, March, 1991.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号