首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polymer substrate based surface plasmon resonance (SPR) technique was developed for detection of specific monoclonal antibody 10B2 (MAb 10B2) against bacterium Acidovorax avenae subsp. citrulli (Aac). The monolayer of Aac antigen was physically immobilized on 95:5 polystryrene – copoly acrylic acid (95PSMA) for detection of antibody. The amount of antigen–antibody binding was found to depend on the surface density of immobilized Aac on the sensor surface and the antibody concentration. The detection limit was 5 μg/ml which was lower than the required concentration during the normal production of the antibody at 10–100 μg/ml. This suggests a possible use of surface for the antibody screening. Moreover, an application in antibody screening was explored by combination of surface plasmon resonance imaging (SPR imaging) and antibody detection assay on the 95PSMA surface. Two antigens of bovine serum albumin (BSA) and Aac were used as a model system for antibody screening. The result shows that both antibodies can be distinguished using the immobilized antigens on the 95PSMA surface based SPR imaging technique.  相似文献   

2.
A sensitive, rapid and novel measurement method for cytokeratin 19 fragment (CYFRA 21–1) in human serum by magnetic particle-based time-resolved fluoroimmunoassay (TRFIA) is described. Built on a sandwich-type immunoassay format, analytes in samples were captured by one monoclonal antibody coating onto the surface of magnetic beads and “sandwiched” by another monoclonal antibody labeled with europium chelates. The coefficient variations of the method were lower than 7 %, and the recoveries were in the range of 90–110 % for serum samples. The lower limit of quantitation of the present method for CYFRA 21–1 was 0.78 ng/ml. The correlation coefficient of CYFRA 21–1 values obtained by our novel TRFIA and CLIA was 0.980. The present novel TRFIA demonstrated high sensitivity, wider effective detection range and excellent reproducibility for determination of CYFRA 21–1 can be useful for early screening and prognosis evaluation of patients with non-small cell lung cancer.  相似文献   

3.

Purpose

To detect anti-CEACAM5 targeted superparamagnetic iron oxide (SPIO) particles in vitro on the cell surface by quantitative magnetic resonance (MR) imaging and to compare with flow cytometry.

Materials and Methods

The monoclonal mouse antibody T84.1 and an appropriate IgG isotype antibody were conjugated to dextran-coated SPIO particles. HT29 cells expressing carcinoembryonic antigen (CEACAM5) were treated with antibody-conjugated SPIO particles. Purified cell samples were examined on a 3.0-T MR scanner using a multi-echo spin-echo sequence for MR relaxometry. Aliquots of the cell samples were further treated with a fluorescein isothiocyanate (FITC) anti-dextran antibody and an Alexa Fluor 488 anti-mouse antibody for the corresponding flow cytometry.

Results

MR relaxometry revealed a dose-dependent binding of T84.1-conjugated SPIO particles with a positive correlation between R2 relaxation rate of cell samples and SPIO particle concentration during incubation (r=0.993, P<.01). Positive correlations were also observed between R2 relaxation rate and flow cytometry (geometric mean) with both fluorescent antibodies (r=0.972 and r=0.953, both P<.01), respectively.

Conclusion

The study revealed the feasibility of quantitative MR imaging of targeted SPIO particles on the cell surface comparable to flow cytometry.  相似文献   

4.
The binding of monoclonal antibodies labelled with magnetic nanoparticles to CD61 surface proteins expressed by platelets in whole blood samples was measured by magnetorelaxometry. This technique is sensitive to immobilization of the magnetic labels upon binding. Control experiments with previous saturation of the epitopes on the platelet surfaces demonstrated the specificity of the binding. The kinetics of the antibody antigen reaction is accessible with a temporal resolution of 12 s. The minimal detectable platelet concentration is about 2000 μL−1 (sample volume 150 μL). The proportionality of the magnetic relaxation amplitude to the number of bound labels allows a quantification of the antibody binding capacity.  相似文献   

5.
We have been looking for a faster and simpler method for traditional Chinese medicine and natural product assay. In this study, we developed a fluorescent immunoassay approach to detect icariin (ICA) using a fluorescently labelled monoclonal antibody. The ICA-specific antibody was purified by the caprylic acid-ammonium sulphate method and then labelled with rhodamine B isothiocyanate (RBITC). Subsequently, an indirect competitive fluorescence-linked immunosorbent assay (icFLISA) was developed to detect ICA using RBITC-labelled anti-ICA MAbs. The RBITC-labelled monoclonal antibody was highly specific for ICA. The fluorescence assay demonstrated an effective ICA measurement range of 1.28 ng/mL to 20 μg/mL (R2 = 0.9946) with relative standard deviations below 10% for both intra-assay and inter-assay repeatability and precision. This icFLISA for ICA is simple, rapid, and sensitive, with a 20-fold greater linear range and a 10-fold lower limit of detection than with the previously developed indirect competitive enzyme-linked immunosorbent assay (ELISA). Thus, this study establishes a useful method for detecting ICA, enabling in vivo visualization research. In the future, FLISA can be also used to assay the concentrations of ICA in biological samples, as well as to investigate the pharmacokinetics of ICA in different tissues to explore the targets of ICA in vivo.  相似文献   

6.
Flow cytometry has become a widely-used and powerful tool for the characterization of cells according to their expression of specific proteins. However, sensitivity of this method is still limited since conventionally labeled antibodies can be conjugated with at maximum 1–10 dye molecules. This fact resulted in the need to develop new techniques in order to identify molecules which are expressed in very low but functionally relevant amounts. In the past, we have successfully used a liposome-based high-sensitivity immunofluorescence technique to measure the expression of low abundant membrane bound glucocorticoid receptors (mGR) on different cell types. The use of this technique allows the detection of as few as 50–100 antigen molecules per cell which is due to a 100-fold to 1000-fold increase in fluorescence signal intensity compared with conventional methods. The higher sensitivity is achieved since thousands of dye molecules can be enclosed in liposomes. Another modern high-sensitivity immunofluorescence staining method is the purchasable Fluorescence Amplification by Sequential Employment of Reagents (FASER) procedure. Here, we aimed at comparing sensitivity and specificity of these two techniques for the detection of the mGR. Our data demonstrate the FASER technique to be more sensitive and also more specific for the detection of mGR as compared to the liposome technique. However, both methods have advantages and disadvantages which are discussed in detail.  相似文献   

7.
分别将量子点和超顺纳米磁珠作为荧光探针和磁信号探针应用于免疫反应中,构建了检测莱克多巴胺的荧光免疫和磁免疫层析的分析方法,并成功应用于尿液中莱克多巴胺的检测。两种方法均基于免疫竞争模式,在荧光免疫分析方法中,量子点偶联上识别莱克多巴胺的抗体,样品中莱克多巴胺和包被在ELISA板上莱克多巴胺的完全抗原竞争结合量子点,样品中莱克多巴胺的浓度越高,ELISA板上吸附的量子点越少,所测荧光强度值越低,该方法的检出限为1 ng·mL-1,检测时间为4 h。在磁免疫层析方法中,检测线上特异性捕获的纳米磁珠颜色的深浅和尿液中莱克多巴胺浓度成反比例关系,即莱克多巴胺的浓度越高,检测线的颜色越浅,该方法的定性检出限为10 ng·mL-1,检测时间为15 min。两种方法各有优缺点,基于量子点的荧光免疫分析法在痕量检测和定量分析方面具有优势,而磁免疫层析法更适合于现场快速检测。  相似文献   

8.
In this paper, two immunoassay methods based on SERS are developed for multiplex analysis, both of which stemmed from the concept of forming a sandwich structure ‘capture antibody substrate/antigen/Raman‐reporter‐labeled immuno‐nanoparticles’. They are two‐molecule labeled one‐nanoparticle and one‐molecule labeled two‐nanoparticle methods. In both the methods, two different antibodies covalently bound to a solid substrate can specifically capture two different antigens from a sample. The captured antigens in turn bind selectively to their corresponding antibodies immobilized on Raman‐reporter‐labeled nanoparticles. Multianalyte immunoassay is successfully demonstrated by the detection of characteristic Raman bands of the probe molecules only when the antigen and antibody are matched. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Simple low molecular weight (MW) chelates of Gd(3+) such as those currently used in clinical MRI are considered too insensitive for most molecular imaging applications. Here, we evaluated the detection limit (DL) of a molecularly targeted low MW Gd(3+)-based T(1) agent in a model where the receptor concentration was precisely known. The data demonstrate that receptors clustered together to form a microdomain of high local concentration can be imaged successfully even when the bulk concentration of the receptor is quite low. A GdDO3A-peptide identified by phage display to target the anti-FLAG antibody was synthesized, purified and characterized. T(1-)weighted MR images were compared with the agent bound to antibody in bulk solution and with the agent bound to the antibody localized on agarose beads. Fluorescence competition binding assays show that the agent has a high binding affinity (K(D)=150 nM) for the antibody, while the fully bound relaxivity of the GdDO3A-peptide/anti-FLAG antibody in solution was a relatively modest 17 mM(-1) s(-1). The agent/antibody complex was MR silent at concentrations below approximately 9 microM but was detectable down to 4 microM bulk concentrations when presented to antibody clustered together on the surface of agarose beads. These results provided an estimate of the DLs for other T(1)-based agents with higher fully bound relaxivities or multimeric structures bound to clustered receptor molecules. The results demonstrate that the sensitivity of molecularly targeted contrast agents depends on the local microdomain concentration of the target protein and the molecular relaxivity of the bound complex. A model is presented, which predicts that for a molecularly targeted agent consisting of a single Gd(3+) complex with bound relaxivity of 100 mM(-1) s(-1) or, more reasonably, four tethered Gd(3+) complexes each having a bound relaxivity of 25 mM(-1) s(-1), the DL of a protein microdomain is approximately 690 nM at 9.4 T. These experimental and extrapolated DLs are both well below current literature estimates and suggests that detection of low MW molecularly targeted T(1) agents is not an unrealistic goal.  相似文献   

10.
Summary Seven random peptide libraries (two displaying linear peptides and five displaying cysteine-constrained peptides) were constructed as gene III fusion proteins of the bacteriophage fd-tet. These libraries were used to screen a blocking monoclonal antibody raised against B7-1 (CD80), a human cell surface antigen that binds two T cell receptors, CD28 and CTLA-4. After three rounds of screening against the immobilized antibody, 1000-fold enrichment was observed in libraries displaying both linear and cysteineconstrained peptides. DNA sequencing of the enriched phage revealed two distinct consensus sequences: HXG(A/Y)XH and DVCXXGGPGC. Phage expressing these consensus sequences bound to L307.4 but not to an isotype matched antibody, indicating that binding was antibody specific. Synthetic peptides corresponding to both motifs inhibited phage binding to L307.4, indicating that the gene III protein is not required for peptide binding. In addition, the cyclized forms of synthetic peptides containing the DVCXXGGPGC motif were capable of inhibiting L307.4 binding to soluble B7-1/Fc fusion. Moreover, phage expressing only the HXG(A/Y)XH consensus sequence were inhibited from binding to L307.4 by the presence of chelating agents. These results indicate that the framework within which the peptide is presented on the surface of the phage may allow the identification of unique peptide motifs with distinct binding characteristics. These peptide motifs could be used for the design of peptidomimetics with therapeutic applications if they inhibit the binding of B7-1 to its T cell receptors.  相似文献   

11.
Antibody adhesion kinetic in real time has been studied by laser reflectometry technique. An ellipsometer is used to measure the light intensity reflected by a silicon wafer. Light intensity reflected by the wafer presents a minimum at the pseudo-Brewster angle. Then, the reflectance increases as the antibodies (monoclonal anti-AB) adhere on interface. Mathematical analysis of reflectance curves versus time verifies that the antibody adhesion at the interface follows Langmuir kinetics (Prog. Biomed. Opt. Imaging 1(5) (2000) 19) for low antibody concentrations. Parameters obtained allow to carry out a detailed study of the antibody adsorption and the antigen–antibody interaction. This conduces to development of an optical immunosensor for detection and quantification of soluble antigens, and a novel method for commercial antiserum quality control. This technique does not require labeled antibodies, being also independent of cellular factors. Also, this technique is quicker and sensible than the conventional immunohematology methods.  相似文献   

12.
Human cardiac troponin I (hcTnI) and troponin T (hcTnT) are the biomarkers of choice for the diagnosis of cardiac diseases. In an effort to improve assay sensitivity, in this study we developed a novel approach to simultaneously detect hcTnI and hcTnT in homogenous solutions by monitoring enhanced-fluorescence-anisotropy changes. Specifically, our design was based on a competition assay by measuring anisotropy change of fluorophore-labeled peptides bound to primary monoclonal antibodies in the presence of nano-gold-modified secondary antibody in response to the presence of target proteins. Enhanced-fluorescence-anisotropy resulted from interaction between the primary antibody and the nano-gold-labeled secondary antibody, which significantly increased the size and decreased tumbling motion of the complex of peptide-antibodies. The measurements were performed to detect hcTnI and hcTnT either individually or simultaneously in a homogenous buffer solution and in the solutions containing human plasma. Our results showed that when fluorescence emission was monitored at a single wavelength selected by a monochromator the assay at all experimental conditions had excellent linear response to the target proteins within the concentration range of 0.5–40 nM. The detection limit is 0.5 nM for both hcTnI and hcTnT in the presence of human plasma. However, when fluorescence emission was monitored using a cutoff filter, the linear response of the assay to the target proteins is within 15–500 pM. The detection limit is 15 pM which is close to the recommended 99th percentile cutoff point for concentrations of hcTnI and hcTnT tests to discriminate healthy and diseased conditions. Homogenous nature, rapid response time, and easy implementation of our assay design make it a useful tool for disease biomarker and protein sensing.  相似文献   

13.
Quantum dots are not widely used in clinical diagnosis. However, the homogeneous time-resolved fluorescence assay possesses many advantages over current methods for the detection of carcinoembryonic antigen (CEA), a primary marker for many cancers and diseases. Therefore, a novel luminescent terbium chelates- (LTCs) and quantum dots-based homogeneous time-resolved fluorescence assay was developed to detect CEA. Glutathione-capped quantum dots (QDs) were prepared from oil-soluble QDs with a 565 nm emission peak. Conjugates (QDs-6 F11) were prepared with QDs and anti-CEA monoclonal antibody. LTCs were prepared and conjugates (LTCs-S001) were prepared with another anti-CEA monoclonal antibody. The fluorescence lifetime of QDs was optimized for sequential analysis. The Förster distance (R0) was calculated as 61.9 Å based on the overlap of the spectra of QDs-6 F11 and LTCs-S001. Using a double-antibody sandwich approach, the above antibody conjugates were used as energy acceptor and donor, respectively. The signals from QDs were collected in time-resolved mode and analyzed for the detection of CEA. The results show that the QDs were suitable for time-resolved fluoroassays. The spatial distance of the donor-acceptor pair was calculated to be 61.9 Å. The signals from QDs were proportional to CEA concentration. The standard curve was LogY?=?2.75566?+?0.94457 LogX (R?=?0.998) using the fluorescence counts (Y) of QDs and the concentrations of CEA (X). The calculated sensitivity was 0.4 ng/mL. The results indicate that water-soluble QDs are suitable for the homogenous immunoassay. This work has expanded future applications of QDs in homogeneous clinical bioassays. Furthermore, a QDs-based homogeneous multiplex immunoassay will be investigated as a biomarker for infectious diseases in future research.  相似文献   

14.
By sequentially pushing micro-beads towards and away from a sensing surface, we show that ultrasonic radiation forces can be used to enhance the interaction between a functionalised glass surface and polystyrene micro-beads, and identify those that bind to the surface by illuminating bound beads using an evanescent field generated by guided light.The movement towards and immobilisation of streptavidin coated beads onto a biotin functionalised waveguide surface is achieved by using a quarter-wavelength mode pushing beads onto the surface, while the removal of non-specifically bound beads uses a second quarter-wavelength mode which exhibits a kinetic energy maximum at the boundary between the carrier layer and fluid, drawing beads towards this surface. This has been achieved using a multi-modal acoustic device which exhibits both of these quarter-wavelength resonances. Both 1-D acoustic modelling and finite element analysis has been used to design this device and to investigate the spatial uniformity of the field.We demonstrate experimentally that 90% of specifically bound beads remain attached after applying ultrasound, with 80% of non-specifically bound control beads being successfully removed acoustically. This approach overcomes problems associated with lengthy sedimentation processes used for bead-based bioassays and surface (electrostatic) forces, which delay or prevent immobilisation. We explain the potential of this technique in the development of DNA and protein assays in terms of detection speed and multiplexing.  相似文献   

15.
Flow cytometry is a fast analysis and separation method for large cell populations, based on collection and processing of optical signals gained on a cell-by-cell basis. These optical signals are scattered light and fluorescence. Owing to its unique potential ofStatistical data analysis and sensitive monitoring of (micro)heterogeneities in large cell populations, flow cytometry—in combination with microscopic imaging techniques—is a powerful tool to study molecular details of cellular signal transduction processes as well. The method also has a widespread clinical application, mostly in analysis of lymphocyte subpopulations for diagnostic (or research) purposes in diseases related to the immune system. A special application of flow cytometry is the mapping of molecular interactions (proximity relationships between membrane proteins) at the cell surface, on a cell-by-cell basis. We developed two approaches to study such questions; both are based ondistance-dependent quenching of excited state fluorophores (donors) by fluorescent or dark (nitroxide radical) acceptors via Förstertype dipole-dipole resonance energy transfer (FRET) and long-range electron transfer (LRET) mechanisms, respectively. A critical evaluation of these methods using donor- or acceptor-conjugated monoclonal antibodies (or their Fab fragments) to select the appropriate cell surface receptor or antigen will be presented in comparison with other approaches for similar purposes. The applicability of FRET and LRET for two-dimensional antigen mapping as well as for detection of conformational changes in extracellular domains of membrane-bound proteins is discussed and illustrated by examples of several lymphoma cell lines. Another special application area of flow cytometry is the analysis of different aspects of cellular signal transduction, e.g., changes of intracellular ion (Ca2+, H+, Na+) concentrations, regulation of ion channel activities, or more complex physiological responses of cell to external stimuli via correlated fluorescence and scatter signal analysis, on a cell-by-cell basis. This way different signaling events such as changes in membrane permeability, membrane potential, cell size and shape, ion distribution, cell density, chromatin structure, etc., can be easily and quickly monitored over large cell populations with the advantage of revealing microheterogeneities in the cellular responses. Flow cytometry also offers the possibility to follow the kinetics of slow (minute- and hour-scale) biological processes in cell populations. These applications are illustrated by the example of complex flow cytometric analysis of signaling in extracellular ATP-triggered apoptosis (programmed cell death) of murine thymic lymphocytes.  相似文献   

16.
Nucleic acid aptamers have long demonstrated the capacity to bind cells with high affinity so that they have been utilized to diagnose various important pathogens. In this study, a DNA aptamer library was on initial efforts developed to act as a specific reporter for rapid detection of enter toxigenic Escherichia coli (ETEC) K88 combined with immuno-magnetic separation (IMS). During a Whole-cell Systematic Evolution of Ligands by Exponential Enrichment (CELL-SELEX) procedure, the last selection pool against ETEC K88, which is named “DNA aptamer library” here, was selected and subsequently identified by flow cytometric analysis and confocal imaging. A K88 monoclonal antibody (mAb) with high affinity (Kaff: 1.616?±?0.033?×?108 M?1) against K88 fimbrial protein was prepared, biotinylated and conjugated to streptavidin-coated magnetic beads (MBs). After the bacteria were effectively captured and enriched from the complex sample by immuno-magnetic beads (IMBs), 5′-FITC modified aptamer library was directly bound to target cells as a specific reporter for its detection. The detection system showed clearly high specificity and sensitivity with the detection limit of 1.1?×?103 CFU/ml in pure culture and 2.2?×?103 CFU/g in artificially contaminated fecal sample. The results also indicated that fluorophore-lablled DNA aptamer library as specific reporter could generate more reliable signals than individual aptamer with best affinity against target cells and implied it would have great applied potential in directly reporting bacteria from complex samples combined with IMS technology.  相似文献   

17.
The magnetic nanoparticles with a diameter of about 60 nm were synthesized by coprecipitation from ferrous and ferric iron solutions and coated with silica. Then the nanoparticles were modified with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPS) in order to immobilize anti-CD34+ monoclonal antibodies to the surface of modified magnetic particles. The results of transmission electron microscope (TEM) and Fourier transformed infrared (FT-IR) indicated that the nanoparticles were successfully prepared. Scanning electron microscope (SEM) photo confirmed that the mouse CD34+ cells (cells expressing CD34) were separated by the immunomagnetic nanoparticles. The viability of the separated cells was studied by hematopoietic colony-forming assay, the result of which showed that the target cells still had an ability of proliferation and differentiation. The application of the separated CD34+ cells was in testing the pharmacological effect of three samples isolated from enzyme-digested traditional Chinese medicine Colla corii asini.  相似文献   

18.

Background

Protein aggregation plays important roles in several neurodegenerative disorders. For instance, insoluble aggregates of phosphorylated tau and of Aβ peptides are cornerstones in the pathology of Alzheimer's disease. Soluble protein aggregates are therefore potential diagnostic and prognostic biomarkers for their cognate disorders. Detection of the aggregated species requires sensitive tools that efficiently discriminate them from monomers of the same proteins. Here we have established a proximity ligation assay (PLA) for specific and sensitive detection of Aβ protofibrils via simultaneous recognition of three identical determinants present in the aggregates. PLA is a versatile technology in which the requirement for multiple target recognitions is combined with the ability to translate signals from detected target molecules to amplifiable DNA strands, providing very high specificity and sensitivity.

Results

For specific detection of Aβ protofibrils we have used a monoclonal antibody, mAb158, selective for Aβ protofibrils in a modified PLA, where the same monoclonal antibody was used for the three classes of affinity reagents required in the assay. These reagents were used for detection of soluble Aβ aggregates in solid-phase reactions, allowing detection of just 0.1 pg/ml Aβ protofibrils, and with a dynamic range greater than six orders of magnitude. Compared to a sandwich ELISA setup of the same antibody the PLA increases the sensitivity of the Aβ protofibril detection by up to 25-fold. The assay was used to measure soluble Aβ aggregates in brain homogenates from mice transgenic for a human allele predisposing to Aβ aggregation.

Conclusions

The proximity ligation assay is a versatile analytical technology for proteins, which can provide highly sensitive and specific detection of Aβ aggregates - and by implication other protein aggregates of relevance in Alzheimer's disease and other neurodegenerative disorders.  相似文献   

19.
Bisphenol A(BPA) is able to mimic the effects of endogenous hormones and it influences the central nervous system in human being. In recent years, BPA has largely arisen because it is released into our environment from many kinds of the polycarbonate plastics and epoxy resins of food cans. Because trace residual amount of BPA might be harmful to human being, many instrument analysis methods have been developed for the determination of BPA. But these instrument analysis methods require complicated pre-treatment steps and do not suit rapid processing of multiple samples. Gold-labeled immunochromatography assay method can provide in situ monitoring of trace BPA in ground-water and drinking water. In order to build the simple and fast gold-labeled immunochromatography assay method, it is necessary to synthesize and identify artificial antigen of BPA firstly. The modified BPA was conjugated with the carrier of bovine serum albumin (BSA) by EDC * HCl, after dialyzed, the synthesized artificial antigen of BPA was lyophilized, and then stored at -20 degrees C. Three methods such as UV and IR spectra scanning and immunoassay were used to determine whether artificial antigen of BPA had been synthesized. The results showed that UV spectrum of artificial antigen of BPA has one absorbance band at 278 nanometers (nm) which is the characteristic absorbance band of the carrier of bovine serum albumin, and another absorbance band at 226 nm which is the characteristic absorbance band of BPA. The IR spectrum absorbance bands of bovine serum albumin and BPA appeared on the IR spectrum graph of artificial antigen of BPA, moreover, shrinked vibration bands at 1 000-1 300 cm(-1) showed that a C-N bond was produced and suggested that the modified BPA and BSA had been linked. The antibody of anti-BPA was raised in sera of immunized Balb/c mice by indirect competitive ELISA. So the above results showed that the artificial antigen of BPA was synthesized successfully. The artificial antigen of BPA can be used to develop monoclonal antibody of anti-BPA and also to prepare gold-labeled immunochromatography assay method for in situ monitoring of BPA in the future.  相似文献   

20.
Specific method for accurate radioimmunoassay of free and total thyroxine in un-extracted serum has been developed. The method is used for estimation of either free thyroxine (T4) or total T4 by inhibition of the binding sites of T4 to protein using TCA/NaOH mixture. The antibodies used in this study were obtained from Mallinkrodt. The separation technique used in our modification is that of dextran charcoal, this is to absorb the free fractions on charcoal.

The kinetics of antibody antigen combination, the parameters of the experiment like; charcoal concentration, antibody dilution, temp., time of incubation and radioactivity concentration were, studied to optimize the standard curve and the sensitivity of T4RIA.

Serum samples of different thyroid cases were investigated for determination of free and total T4 concentration to get the levels for each group of which 50 normals, 57 hyperthyroidism and 21 hypothyroidism in comparison with the classical tests of thyroid functions. Also sensitivity and variance coefficient has been carried out in comparison with other T4RIA techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号