首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
alpha-Cyclodextrin, beta-cyclodextrin, N-(6(A)-deoxy-alpha-cyclodextrin-6(A)-yl)-N'6(A)-deoxy-beta-cyclodextrin-6(A)-yl)urea and N,N-bis(6(A)-deoxy-beta-cyclodextrin-6(A)-yl)urea (alphaCD, betaCD, 1 and 2) form inclusion complexes with E-4-tert-butylphenyl-4'-oxyazobenzene, E-3(-). In aqueous solution at pH 10.0, 298.2 K and I = 0.10 mol dm(-3)(NaClO(4)) spectrophotometric UV-visible studies yield the sequential formation constants: K(11) = (2.83 +/- 0.28) x 10(5) dm(3) mol(-1) for alphaCD.E-(-), K(21) = (6.93 +/- 0.06) x 10(3) dm(3) mol(-1) for (alphaCD)(2).E-3(-), K(11) = (1.24 +/- 0.12) x 10(5) dm(3) mol(-1) for betaCD.E-(-), K(21) = (1.22 +/- 0.06) x 10(4) dm(3) mol(-1) for (betaCD)(2).E-(-), K(11) = (3.08 +/- 0.03) x 10(5) dm(3) mol(-1) for .E-3(-), K(11) = (8.05 +/- 0.63) x 10(4) dm(3) mol(-1) for .E-3(-) and K(12) = (2.42 +/- 0.53) x 10(4) dm(3) mol(-1) for .(E-3(-))(2). (1)H ROESY NMR studies show that complexation of E-3(-) in the annuli of alphaCD, betaCD, 1 and 2 occurs. A variable-temperature (1)H NMR study yields k(298 K)= 6.7 +/- 0.5 and 5.7 +/- 0.5 s(-1), DeltaH = 61.7 +/- 2.7 and 88.1 +/- 4.2 kJ mol(-1) and DeltaS = -22.2 +/- 8.7 and 65 +/- 13 J K(-1) mol(-1) for the interconversion of the dominant includomers (complexes with different orientations of alphaCD) of alphaCD.E-3(-) and (alphaCD)(2).E-3(-), respectively. The existence of E-3(-) as the sole isomer was investigated through an ab initio study.  相似文献   

2.
The aim of this work was voltammetric determination of 1-aminopyrene and 1-hydroxypyrene using carbon paste electrodes modified with cyclodextrin derivatives and double stranded deoxyribonucleic acid (dsDNA). The detection schemes based on a preconcentration and differential pulse voltammetric (DPV) determination at beta-cyclodextrin and gamma-cyclodextrin modified carbon paste electrode (beta-CD/CPE, gamma-CD/CPE), neutral beta-cyclodextrin polymer and carboxymethyl-beta-cyclodextrin polymer modified screen-printed electrode (beta-CDP/SPE, beta-CDPA/SPE) and dsDNA modified screen-printed electrode (DNA/SPE) are proposed for the trace determination of studied analytes within the concentration range from 2 x 10(-8) to 4 x 10(-7) mol dm(-3) and from 2 x 10(-7) to 4 x 10(-6) mol dm(-3) with the limits of quantification down to 10(-8) mol dm(-3). Depending on pH, 1-aminopyrene interacts with both surface attached CD and DNA by electrostatic bonds and supramolecular complexation while 1-hydroxypyrene associates with the CD hosts via complexation. The 1-aminopyrene interaction with dsDNA was confirmed by fluorimetric measurements in the solution phase using a competing DNA-TO-PRO-3 dye complex. In addition, the effect of temperature on this association was investigated using an electrically heated DNA-modified carbon paste electrode (DNA/CPE).  相似文献   

3.
A series of modified beta-cyclodextrins with nucleobase substituents, that is, mono(6-ade-6-deoxy)-beta-cyclodextrin (2) and mono(6-ura-6-deoxy)-beta-cyclodextrin (3) as well as mono(6-thy-6-deoxy)-beta-cyclodextrin (4), were selected as molecular receptors to investigate their conformation and inclusion complexation behaviors with some chiral molecules, that is, (+)-camphor, (-)-camphor, (+)-borneol, and (-)-borneol, by spectrophotometric and microcalorimetric titrations in aqueous phosphate buffer solution (pH 7.2) at 298.15 K. Circular dichroism and NMR studies demonstrated that these nucleobase-modified beta-cyclodextrins adopted a co-inclusion mode upon complexation with guest molecules; that is, the originally self-included nucleobase substituents of the host did not move out from the beta-cyclodextrin cavity, but coexisted with guest molecule in the beta-cyclodextrin cavity upon inclusion complexation. Significantly, these nucleobase-modified beta-cyclodextrins efficiently enhanced the molecular binding ability and the chiral recognition ability of native beta-cyclodextrin, displaying enantioselectivity up to 3.7 for (+)-camphor/(-)-camphor pair by 2 and 3.5 for (-)-borneol/(+)-borneol pair by 3. The enhanced molecular/chiral recognition abilities of 2-4 toward (+/-)-camphor were mainly attributed to the increased entropic gains due to the extensive desolvation effects, while the favorable enthalpic gains originating from the good size-fit relationship as well as the hydrogen bond interactions between host and guest result in the enhanced molecular/chiral recognition abilities of 2-4 toward (+/-)-borneol.  相似文献   

4.
5.
A pH titration study shows that 6(A)-((2-(bis(2-aminoethyl)amino)ethyl)amino)-6(A)-deoxy-beta-cyclodextrin (betaCDtren) forms binary metallocyclodextrins, [M(betaCDtren)](2+), for which log(K/dm(3) mol(-)(1)) = 11.65 +/- 0.06, 17.29 +/- 0.05, and 12.25 +/- 0.03, respectively, when M(2+) = Ni(2+), Cu(2+), and Zn(2+), where K is the stability constant in aqueous solution at 298.2 K and I = 0.10 mol dm(-)(3) (NaClO(4)). The ternary metallocyclodextrins [M(betaCDtren)Trp](+), where Trp(-) is the tryptophan anion, are characterized by log(K/dm(3) mol(-)(1)) = 8.2 +/- 0.2 and 8.1 +/- 0.2, 9.5 +/- 0.3 and 9.4 +/- 0.2, and 8.1 +/- 0.1 and 8.3 +/- 0.1, respectively, where the first and second values represent the stepwise stability constants for the complexation of (R)- and (S)-Trp(-), respectively, when M(2+) = Ni(2+), Cu(2+), and Zn(2+). From comparisons of stabilities and UV-visible spectra, the binary and ternary metallocyclodextrins appear to be six-coordinate when M(2+) = Ni(2+) and Zn(2+) and five-coordinate when M(2+) = Cu(2+). The factors affecting the stoichiometries and stabilities of the metallocyclodextrins, are discussed and comparisons are made with related systems.  相似文献   

6.
Proton-ligand dissociation and metal-ligand formation constants of 2-amino-4-chloro-6-[alpha-(phenyl)ethylidenehydrazino]pyrimidine; (AHP) and its p-chloro (ClAHP) and p-methoxy (OMeAHP) derivatives (Str.I&II) with Mn2+, Co2+ Ni2+, Cu2+, Zn2+, Cd2+, UO2(2+), Th4+, Ce3+ and Pr3+ ions have been evaluated potentiometrically in 75% (v/v) dioxane-water and 0.1 mol dm(-3) KNO3. The thermodynamic functions (deltaG, deltaH and deltaS) for the complexation of OMeAHP were evaluated and discussed. The effect of the temperature, dielectric constant of the solvents, mole fraction of dioxane and ionic strength of the medium on the stability of Pr3+-complexes show that the stability of the chelates increases by increasing both the electron repelling property of the substituents and the organic solvent content, and by decreasing the temperature, the ionic strength and the dielectric constant of the medium.  相似文献   

7.
A [2]rotaxane capped by a beta-cyclodextrin and a 2,4,6-trinitrophenyl group has been prepared by dissolving 6-aminocinnamoyl beta-cyclodextrin in water with 1-adamantane carboxylic acid and complexation with alpha-cyclodextrin followed by the reaction with 2,4,6-trinitrobenzene sulfonic acid sodium salt. The [2]rotaxane has been found to form supramolecular polymers by host-guest interactions.  相似文献   

8.
(E)-4-tert-Butyl-4'-oxystilbene, 1(-), is thermally stable as the (E)-1(-) isomer but may be photoisomerized to the (Z)-1(-) isomer as shown by UV-vis and (1)H NMR studies in aqueous solution. When (E)-1(-) is complexed by alphaCD two inclusion isomers (includomers) form in which alphaCD assumes either of the two possible orientations about the axis of (E)-1(-) in alphaCD.(E)-1(-) for which (1)H NMR studies yield the parameters: k(1)(298 K)= 12.3 +/- 0.6 s(-1), DeltaH(1)(++)= 94.3 +/- 4.7 kJ mol(-1), DeltaS1(++)= 92.0 +/- 5.0 J K(-1) mol(-1), and k(2)(298 K)= 10.7 +/- 0.5 s(-1), DeltaH(2)(++)= 93.1 +/- 4.7 kJ mol(-1), DeltaS2(++)= 87.3 +/- 5.0 J K(-1) mol(-1) for the minor and major includomers, respectively. The betaCD.(E)-1(-) complex either forms a single includomer or its includomers interchange at the fast exchange limit of the (1)H NMR timescale. Complexation of 1(-) by N-(6(A)-deoxy- alpha-cyclodextrin-6(A)-yl)-N'-(6(A)-deoxy- beta-cyclodextrin-6(A)-yl)urea, results in the binary complexes 2.(E)-1(-) in which both CD component annuli are occupied by (E)-1(-) and which exists exclusively in darkness and 2.(Z)-1(-) in which only one CD component is occupied by (Z)-1(-) and exists exclusively in daylight at lambda > or = 300 nm. Irradiation of solutions of the binary complexes at 300 and 355 nm results in photostationary states dominated by 2.(E)-1(-) and 2.(Z)-1(-), respectively. In the presence of 4-methylbenzoate, 4(-), 2.(Z)-1(-) forms the ternary complex 2.(Z)-1(-).4(-) where 4(-) occupies the second CD annulus. Interconversion occurs between 2.(Z)-1(-).4(-) and 2.(E)-1(-)+4(-) under the same conditions as for the binary complexes alone. Similar interactions occur in the presence of 4-methylphenolate and 4-methylphenylsulfonate. The two isomers of each of these systems represent different states of a molecular device, as do the analogous binary complexes of N,N-bis(6(A)-deoxy- beta-cyclodextrin-6(A)-yl)urea, 3, [3.(E)-1(-) and 3.(Z)-1(-), where the latter also forms a ternary complex with 4(-).  相似文献   

9.
The stability constants of the complexes formed by 1,10-dimethyl-1,4,7,10,13,16-hexaazacyclooctadecane (L) and 1,4,7-trimethyl-1,4,7,10,13,16,19-heptaazacyclohenicosane (L1) with Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Pb(2+), as well as that for the formation of PbL2(2+) (L2 = 1,4,7,13-tetramethyl-1,4,7,10,13,16-hexaazacyclooctadecane), were determined by means of potentiometric (pH-metric) titrations in 0.15 mol dm(-)(3) NaClO(4) at 298.1 +/- 0.1 K. The enthalpy changes for the formation of Cu(2+) complexes with L and L1 were measured by means of microcalorimetry. These thermodynamic data were compared with those previously reported for L2, 1,4,7,10,13,16-hexaazacyclooctadecane (L3), and 1,4,7,10,13,16,19-heptaazacyclohenicosane (L4) evidencing that nitrogen methylation can produce lower or higher complex stability depending on the metal ion and the number of methylated nitrogens. The equilibria of complexation of ATP(4)(-), ADP(3)(-), AMP(2)(-), P(2)O(7)(4)(-), and [Co(CN)(6)](3)(-) by Land L1 were studied by means of pH-metric titrations in 0.15 mol dm(-)(3) NaClO(4) at 298.1 +/- 0.1 K. The catalytic reactions of ATP dephosphorylation induced by these ligands in solution were followed by (31)P NMR spectroscopy at different temperature and pH values. L is the most appropriate receptor, among L-L4, in the recognition of the nucleotide. The catalytic efficiency of hexa- and heptaazaligands increases in the order L < L3 < L2 and L1 < L4, respectively, L4 being the most efficient. Namely, di- and tetramethylation of L3 produces opposite effects on its catalytic properties.  相似文献   

10.
Complexation of the Brilliant Yellow tetraanion, 3(4-), by two new diazacoronand linked beta-cyclodextrin (beta CD) dimers 4,13-bis(2-(6A-deoxy-beta-cyclodextrin-6A-yl)aminooctylamidomethyl- and 4,13-bis(8-(6A-deoxy-beta-cyclodextrin-6A-yl)aminooctylamidomethyl)-4,13- diaza-1,7,10-trioxacyclopentadecane, 1 and 2, respectively, has been studied in aqueous solution. UV-visible spectrophotometric studies at 298.2 K, pH 10.0 and I = 0.10 mol dm-3 (NEt4ClO4) yielded complexation constants for the complexes 1 x 3(4-) and 2 x 3(4-), K1 = (1.08 +/- 0.01) x 10(5) and (6.21 +/- 0.08) x 10(3) dm3 mol-1, respectively. Similar studies at 298.2 K, pH 10.0 and I = 0.10 mol dm-3 (NaClO4) yielded K3 = (4.63 +/- 0.09) x 10(5) and (3.38 +/- 0.05) x 10(4) dm3 mol-1 for the complexation of 3(4-) by Na+ x 1 and Na+ x 2 to give Na+ x 1 x 3(4-) and Na+ x 2 x 3(4-), respectively. Potentiometric studies of the complexation of Na+ by 1 and 2 by the diazacoronand component of the linkers to give Na+ x 1 and Na+ x 2 yielded K2 = (2.00 +/- 0.05) x 10(3) and (1.8 +/- 0.05) x 10(3) dm3 mol-1, respectively, at 298.2 K and I = 0.10 mol dm-3(NEt4ClO4). For complexation of Na+ by 1 x 3(4-) and 2 x 3(4-) to give Na+ x 1 x 3(4-) and Na+ x 2 x 3(4-) K2K3/K1 = K4 = 8.6 x 10(2) and 9.8 x 10(3) dm3 mol-1, respectively. The pKaS of 1H4(4+) are 7.63 +/- 0.01, 6.84 +/- 0.02, 5.51 +/- 0.04 and 4.98 +/- 0.03, and those of 2H4(4+) are 8.67 +/- 0.02, 8.11 +/- 0.02, 6.06 +/- 0.02 and 5.14 +/- 0.05. The larger magnitude of K1 for 1 by comparison with K1 for 2 is attributed to the octamethylene linkers of 2 competing with 3(4-) for occupancy of the annuli of the beta CD entities while the competitive ability of the dimethylene linkers of 1 is less. A similar argument applies to the relative magnitudes of K3 for Na+ x 1 and Na+ x 2. Increased electrostatic attraction probably accounts for K3 > K1 for Na+ x 1 x 3(4-) and 1 x 3(4-) and for Na+ x 2 x 3(4-) and 2 x 3(4-). The lesser magnitudes of K2 and K4 for Na+ x 1 and Na+ x 1 x 3(4-) compared with those for Na+ x 2 and Na+ x 2 x 3(4-) are attributed to the octamethylene linkers of 2 producing a more hydrophobic environment for the diazacoronand than that produced by the dimethylene linkers of 1. 1H NMR spectroscopic studies and the syntheses of 1 and 2 are described.  相似文献   

11.
Chirality of metal complexes M(phen)3(n+) (M = Ru(II), Rh(III), Fe(II), Co(II), and Zn(II), and phen = 1,10-phenanthroline) is recognized by heptakis(6-carboxymethylthio-6-deoxy)-beta-cyclodextrin heptaanion (per-CO2(-)-beta-CD) and hexakis(2,3,6-tri-O-methyl)-alpha-cyclodextrin (TMe-alpha-CD) in D2O. The binding constant (K) for the Delta-Ru(phen)3(2+) complex of per-CO2(-)-beta-CD (K = 1250 M(-1)) in 0.067 M phosphate buffer at pD 7.0 is approximately 2 times larger than that for the Lambda-isomer (590 M(-1)). Definite effects of inorganic salts on stability of the complexes indicate a large contribution of Coulomb interactions to complexation. The fact that hydrophilic Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) does not form a complex with per-CO2(-)-beta-CD suggests the importance of inclusion of the guest molecule into the host cavity for forming a stable ion-association complex. The positive entropy change for complexation of Ru(phen)3(2+) with per-CO2(-)-beta-CD shows that dehydration from both the host and the guest occurs upon complexation. Similar results were obtained with trivalent Rh(phen)3(3+) cation. Pfeiffer effects were observed in complexation of racemic Fe(phen)3(2+), Co(phen)3(2+), and Zn(phen)3(2+) with per-CO2(-)-beta-CD with enriched Delta-isomers. Native cyclodextrins such as alpha-, beta-, and gamma-cyclodextrins as well as heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin do not interact with Ru(bpy)3(2+). However, hexakis(2,3,6-tri-O-methyl)-alpha-cyclodextrin (TMe-alpha-CD) interacts with Ru(phen)3(2+) and Ru(bpy)3(2+) and discriminates between the enantiomers of these metal complexes. The K values for the Delta- and Lambda-Ru(phen)3(2+) ions are 54 and 108 M(-1), respectively. Complexation of the Delta- and Lambda-isomers of Ru(phen)3(2+) with TMe-alpha-CD is accompanied by negative entropy changes, suggesting that cationic Ru(phen)3(2+) is shallowly included into the cavity of the neutral host through van der Waals interactions. The Delta-enantiomer, having a right-handed helix configuration, fits the primary OH group side of per-CO2(-)-beta-CD (SCH2CO2(-) side) well, while the Lambda-enantiomer, having a left-handed helix configuration, is preferably bound to the secondary OH group side of TMe-alpha-CD. The asymmetrically twisted shape of a host cavity seems to be the origin of chiral recognition by cyclodextrin.  相似文献   

12.
[Reaction: see text]. The self-inclusion behavior and induced circular dichroism (ICD) characteristics of two beta-cyclodextrin (beta-CD) derivatives, in which a 1-methyl-4,4'-bipyridinium (viologen) group is connected by an octamethylene chain to either the primary (2(2+)) or secondary (3(2+)) side of beta-CD, and of their reduced forms, are investigated. 1H NMR studies showed that 2(2+) forms an intramolecular self-inclusion complex with K(in) = 3.1 +/- 0.4, whereas 3(2+) forms a head-to-head type of dimer with K(D) = 65 +/- 10 M(-1) at 25 degrees C. 2(2+) and 3(2+) form [2]pseudorotaxanes with alpha-CD, with the secondary side of the alpha-CD facing the viologen moiety. The ICD characteristics of mono-6-[4-(1-methyl-4-pyridinio)-1-pyridinio]-beta-CD (1(2+)), 2(2+), 3(2+), and methyloctyl viologen-beta-CD complexes were obtained for the oxidized and reduced states of the viologen units. The results indicated dimer formation for 1 degrees , and intramolecular complexation for 2*+ and 2 degrees in which the reduced viologen units are outside the beta-CD cavity. The results also indicated intramolecular complexation for 3*+ and 3 degrees, but with reduced viologen units inside the cavity. This work provides unequivocal evidence of the preference of the secondary side of cyclodextrins for viologen groups, regardless of their oxidation states, and the dependence of ICD of the viologen chromophores on their location with respect to the CD cavity.  相似文献   

13.
The enantiomeric separation of alpha-hydroxy acids and carboxylic acids was successfully performed by using 6-deoxy-6-N-histamino-beta-cyclodextrin (CD-hm), a monosubstituted positively charged beta-cyclodextrin (beta-CD) bearing a histamine moiety linked to the C6 of a glucose unit in the upper CD rim via the amino group. Good results were obtained at a low selector concentration (1 mM). The number of positive charges on the upper rim may be modulated as a function of pH, because of the different pKa of the amino and the imidazolyl groups, and was found to affect both the enantioselectivity and resolution factors. With the analogous 6-deoxy-[4-(2-aminoethyl)imidazolyl]-beta-cyclodextrin (CD-mh) bearing the histamine moiety linked to the C6 via the imidazolyl group, very poor results were obtained, showing that the proximity of the positive charge to the cavity plays an important role in the enantiomeric recognition. The complexation mode was studied by electrospray ionization-mass spectrometry (ESI-MS) and two-dimensional nuclear magnetic resonance (2-D NMR) ROESY experiments: the recognition model is consistent with an inclusion complexation of the aromatic ring of the analyte within the CD cavity coupled to electrostatic interactions between the carboxylate and the protonated amino group of the cyclodextrin.  相似文献   

14.
Li C  Shu X  Li J  Chen S  Han K  Xu M  Hu B  Yu Y  Jia X 《The Journal of organic chemistry》2011,76(20):8458-8465
The binding behavior of substituted 1,4-bis(pyridinium)butane derivatives (X-Py(CH(2))(4)Py-X, X = H, 2-methyl, 3-methyl, 4-methyl, 2,6-dimethyl, 4-pyridyl, and 4-COOEthyl) 1(2+)-7(2+), with negatively charged carboxylatopillar[5]arene (CP5A) has been comprehensively investigated by (1)H NMR and 2D ROESY and UV absorption and fluorescence spectroscopy in aqueous phosphate buffer solution (pH 7.2). The results indicated that the position of the substituents attached on pyridinium ring dramatically affects the association constants and binding modes. 3- and 4-Substituted guests (1(2+), 3(2+), 4(2+), 6(2+), 7(2+)) form [2]pseudorotaxane geometries with CP5A host, giving very large association constants (>10(5) M(-1)), while 2,6-dimethyl-substituted 5(2+) forms external complex with relatively small K(a) values [(2.4 ± 0.3) × 10(3) M(-1)] because the 2,6-dimethylpyridinium unit is too bulky to thread the host cavity. Both of the binding geometries mentioned above are observed for 2(2+), having one methyl group in the 2-position of pyridinium. Typically, the association constant of [2]pseudorotaxane 1(2+)?CP5A exceeds 10(6) M(-1) in water, which is significantly higher than those of previously reported analogues in organic solvents. The remarkably improved complexation of bis(pyridinium) guests by the anionic host was due to electrostatic attraction forces and hydrophobic interactions.  相似文献   

15.
Abstract

Crystal structures were obtained for the 3(C),2′;6′,3″(C)-linked bispyrazolylpyridines 2,6-di(2H-4,5,6,7-tetrahydroindazol-3-yl)pyridine (1), 2,6-di(l-methyl-4,5,6,7-tetrahydroindazol-3-yl)pyridine (2), 2,6-di(1 -(4-ethoxycarbonylphenyl)-4,5,6,7-tetrahydroindazol-3-yl)pyridine (3) and for the homoleptic RuII complex of 2, [Ru(2)2]Cl2, which crystallized with 7 molecules of CHCl3. Ligand 1 adopts the inter-and intramolecularly hydrogen-bonded syn,syn rotameric conformation, while 2 and 3 were in the anti,anti forms. Relative to the latter, iigand distortions were assessed in 1 (considered as a H+ complex) and [Ru(2)2]Cl2. Comparisons were drawn with other tridentate ligands containing a pyridine nucleus, specifically the 1(N),2′;6′,1″(N″) linkage isomers and 2,2′;6′,2″-terpyridine, in both free and RuII complexed forms, as well as with their bidentate analogues. Unlike with bidentate ligands, the bonds to the pyridine moiety are shortest, the outer heterocyclic rings are drawn inward and, overall, the ligands remain fairly planar. Flanking substituents remain well splayed out in the 1,2′;6′,1″-linked bispyrazolylpyridines, are more parallel in the 3,2′;6′,3″ linkage isomers and are unfavorably compressed in terpyridines.  相似文献   

16.
Synthesis and antibacterial activity of 7-[(Z)-2-(2-aminothiazol-4-yl)-2-(3-(3-hydroxy-4-pyridon-1-y l)-3- carboxypropoxyimino)acetamido]-3-(1,2,3-thiadiazol-5-yl)thio methyl-3-cephem-4-carboxylic acid (12a) and its related compounds are described. Compound 12a exhibited excellent antibacterial activity against gram-negative bacteria, including Pseudomonas aeruginosa.  相似文献   

17.
A series of novel 6,6'-bis(beta-cyclodextrin)s linked by 2,2'-bipyridine-4,4'-dicarboxy tethers; that is, 2,2'-bipyridine-4,4'-dicarboxy-bridged bis(6-O-beta-cyclodextrin) (2) and N,N'-bis(2-aminoethyl )-2,2'-bipyridine-4,4'-dicarboxamide-bridged (3), N,N'-bis(5-amino-3-azapentyl)-2,2'-bipyridine-4,4'-dicarboxamide-bridged (4) and N,N'-bis(8-amino-3,6-diazaoctyl)-2,2'-bipyridine-4,4'-dicarboxamide-bridged bis(6-amino-6-deoxy-beta-cyclodextrin) (5), has been synthesized as cooperative multipoint-recognition receptor models. The inclusion complexation behavior of 2-5 with organic dyes; that is, ammonium 8-anilino-1-naphthalenesulfonate, Brilliant Green, Methyl Orange, Acridine Red, and Rhodamine B, has been investigated in aqueous phosphate buffer solutions (pH 7.20) at 25 degrees C by means of ultraviolet, fluorescence, and circular dichroism spectrometry as well as by fluorescence lifetime measurements. The spectral titrations gave the complex stability constants (Ks) and Gibbs' free energy changes (deltaG degrees) for the inclusion complexation of 2-5 with the organic dyes and other thermodynamic parameters (deltaH degrees and deltaS degrees) for the inclusion complexation of 2-4 with the fluorescent dyes Acridine Red and Rhodamine B. Bis(beta-cyclodextrin)s 2-5 displayed higher binding abilities toward most of the examined dye molecules than native beta-cyclodextrin 1; this is discussed from the viewpoints of the size/shape-fit concept, the induced-fit interaction, and cooperative, multipoint recognition by the bridging chain and the dual hydrophobic cavities. Thermodynamically, the inclusion complexation of 2-4 with Acridine Red is totally enthalpy driven with a negative or minor positive entropic contribution, but the inclusion complexation with Rhodamine B is mainly entropy-driven with a mostly positive, but occasionally negative, enthalpic contribution; in some cases this determines the complex stability.  相似文献   

18.
Equilibria between two conformational isomers of pyrid-2-yl ureas, the (E,Z) and (Z,Z) forms, have been studied in DMF-d(7) at -70 degrees C. Most of them show a small preference for the (E,Z) form with an equilibrium constant K(i) around 1-2. However, the K(i) value for 1-methyl-2-(3-(pyrid-2-yl)ureido)pyridinium iodide (12) was found to be 14.2 +/- 1.2. That is 1 order of magnitude larger than those of the others, which indicates that the positively charged 1-methylpyridinium-2-yl substituent would facilitate the (E,Z) form formation. Pyrid-2-yl ureas bind cytosine in DMF-d(7) with binding constants K(B) ranging from 30 to 1700 M(-1). Electron withdrawing substituents, such as the 4-O(2)NC(6)H(4)- or 1-methylpyridinium-4-yl substituent, preferentially facilitate the intermolecular cytosine complexation with large binding constants.  相似文献   

19.
Simple azo-dyes carrying phosphonic acid and arsonic acid substituents such as 4-(4-hydroxyphenyl azo)phenylphosphonic acid (5) and 4-(4-hydroxyphenylazo)phenylarsonic acid (6) bind more strongly to high surface area oxides such as aluminium trihydroxide and goethite than their carboxylic and sulfonic acid analogues and the phosphonate-functionalized dyes have been shown to have greater humidity fastness when printed onto commercial alumina-coated papers. Adsorption isotherm measurements provide evidence for the formation of ternary dye/cyclodextrin/surface complexes. Dyes which form such ternary complexes show higher light fastness when printed onto alumina coated papers in an ink formulation containing alpha-cyclodextrin.  相似文献   

20.
Szente  Lajos  Fenyvesi  Éva 《Structural chemistry》2017,28(2):479-492

Lipids being hydrophobic or amphiphilic can be encapsulated by cyclodextrin complexation. Among the various groups of lipids cholesterol, fatty acids, phospholipids and sphingolipids are overviewed concerning the structural requirements for both the lipid and the cyclodextrin component of the complexes. The chain length and the number and position of the double bonds in the fatty acids, the polarity of the head-group in the phospholipids and sphingolipids are important factors. Concerning the cyclodextrins, in addition to the most crucial cavity size also the chemical microenvironment of cavity entrances determine the interaction with lipids. While fatty acids, phospholipids and sphingolipids prefer the alpha-cyclodextrin cavity, cholesterol is complexed first of all by the beta-cyclodextrin and its derivatives. Methylated beta-cyclodextrin has extreme affinity to all of these lipids, which are common constituents of cell membranes. Based on the knowledge on the specific cyclodextrin-lipid interactions, cyclodextrin derivatives are able to selectively remove certain lipid components from model and biological membranes and can be selected making possible to modulate the lipid profile in such membranes.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号