首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(11):2602-2607
The new compounds K(2)TiCu(2)S(4), Rb(2)TiCu(2)S(4), Rb(2)TiAg(2)S(4), Cs(2)TiAg(2)S(4), and Cs(2)TiCu(2)Se(4) have been synthesized by the reactions of A(2)Q(3) (A = K, Rb, Cs; Q = S, Se) with Ti, M (M = Cu or Ag), and Q at 823 K. The compounds Rb(2)TiCu(2)S(4), Cs(2)TiAg(2)S(4), and Cs(2)TiCu(2)Se(4) are isostructural. They crystallize with two formula units in space group P4(2)/mcm of the tetragonal system in cells of dimensions a = 5.6046(4) A, c = 13.154(1) A for Rb(2)TiCu(2)S(4), a =6.024(1) A, c = 13.566(4) A for Cs(2)TiAg(2)S(4), and a =5.852(2) A, c =14.234(5) A for Cs(2)TiCu(2)Se(4) at 153 K. Their structure is closely related to that of Cs(2)ZrAg(2)Te(4) and comprises [TiM(2)Q(4)(2)(-)] layers, which are separated by alkali metal atoms. The [TiM(2)Q(4)(2)(-)] layer is anti-fluorite-like with both Ti and M atoms tetrahedrally coordinated to Q atoms. Tetrahedral coordination of Ti(4+) is rare in the solid state. On the basis of unit cell and space group determinations, the compounds K(2)TiCu(2)S(4) and Rb(2)TiAg(2)S(4) are isostructural with the above compounds. The band gaps of K(2)TiCu(2)S(4), Rb(2)TiCu(2)S(4), Rb(2)TiAg(2)S(4), and Cs(2)TiAg(2)S(4) are 2.04, 2.19, 2.33, and 2.44 eV, respectively, as derived from optical measurements. From band-structure calculations, the optical absorption for an A(2)TiM(2)Q(4) compound is assigned to a transition from an M d and Q p valence band (HOMO) to a Ti 3d conduction band.  相似文献   

2.
Preparation and Properties of the Alkali Hexaiodatogermanates(IV), M2[Ge(IO3)6] Germanium dioxide aquate and alkali nitrates react with iodic acid to yield alkali hexaiodatogermanates(IV), M2[Ge(IO3)6], (M = NH4, K, Rb, Cs). The unit-cell dimensions of the trigonal cell are for K2[Ge(JO3)6] a0 = 11.16 Å, c0 = 11.34 Å, z = 3. The compounds M[MIV(IO3)6] (MI = NH4, K, Rb, Cs, MIV = Ge, Sn, Pb, Ti, Zr, Mn) are isomorphous1).  相似文献   

3.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(10):2346-2351
The alkali metal/group 4 metal/polychalcogenides Cs(4)Ti(3)Se(13), Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) have been synthesized by means of the reactive flux method at 823 or 873 K. Cs(4)Ti(3)Se(13) crystallizes in a new structure type in space group C(2)(2)-P2(1) with eight formula units in a monoclinic cell at T = 153 K of dimensions a = 10.2524(6) A, b = 32.468(2) A, c = 14.6747(8) A, beta = 100.008(1) degrees. Cs(4)Ti(3)Se(13) is composed of four independent one-dimensional [Ti(3)Se(13)(4-)] chains separated by Cs(+) cations. These chains adopt hexagonal closest packing along the [100] direction. The [Ti(3)Se(13)(4-)] chains are built from the face- and edge-sharing of pentagonal pyramids and pentagonal bipyramids. Formal oxidation states cannot be assigned in Cs(4)Ti(3)Se(13). The compounds Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) crystallize in the K(4)Ti(3)S(14) structure type with four formula units in space group C(2)(h)()(6)-C2/c of the monoclinic system at T = 153 K in cells of dimensions a = 21.085(1) A, b = 8.1169(5) A, c = 13.1992(8) A, beta = 112.835(1) degrees for Rb(4)Ti(3)S(14);a = 21.329(3) A, b = 8.415(1) A, c = 13.678(2) A, beta = 113.801(2) degrees for Cs(4)Ti(3)S(14); a = 21.643(2) A, b = 8.1848(8) A, c = 13.331(1) A, beta = 111.762(2) degrees for Rb(4)Hf(3)S(14); a = 22.605(7) A, b = 8.552(3) A, c = 13.880(4) A, beta = 110.919(9) degrees for Rb(4)Zr(3)Se(14); a = 22.826(5) A, b = 8.841(2) A, c = 14.278(3) A, beta = 111.456(4) degrees for Cs(4)Zr(3)Se(14); and a = 22.758(5) A, b = 8.844(2) A, c = 14.276(3) A, beta = 111.88(3) degrees for Cs(4)Hf(3)Se(14). These A(4)M(3)Q(14) compounds (A = alkali metal; M = group 4 metal; Q = chalcogen) contain hexagonally closest-packed [M(3)Q(14)(4-)] chains that run in the [101] direction and are separated by A(+) cations. Each [M(3)Q(14)(4-)] chain is built from a [M(3)Q(14)] unit that consists of two MQ(7) pentagonal bipyramids or one distorted MQ(8) bicapped octahedron bonded together by edge- or face-sharing. Each [M(3)Q(14)] unit contains six Q(2)(2-) dimers, with Q-Q distances in the normal single-bond range 2.0616(9)-2.095(2) A for S-S and 2.367(1)-2.391(2) A for Se-Se. The A(4)M(3)Q(14) compounds can be formulated as (A(+))(4)(M(4+))(3)(Q(2)(2-))(6)(Q(2-))(2).  相似文献   

4.
Eichler JF  Just O  Rees WS 《Inorganic chemistry》2006,45(17):6706-6712
The heteroleptic lithium amide, [(Me3Sn)(Me3Ge)NLi.(Et2O)]2 (2), reacts with MCl(2) (M = Sn, Ge, Pb) to yield the corresponding cubane complexes [M(mu3-NGeMe3)]4 [M = Sn (3), Ge (4), Pb (5)]. In an analogous reaction with SnCl2, the lithium stannylamide, [(Me3Sn)2NLi.(Et2O)]2 (1), produces the mixed-valent Sn congener [Sn(mu3-NSnMe3)]4 (6). All imidocubanes contain both di- and tetravalent group 14 metals that are bridged by N. These structures are comprised of M4N4 (M = Sn, Pb, Ge) cores that possess varying distortion from perfect cube geometry. The Pb derivative (5) exhibits enhanced volatility and vapor-phase integrity.  相似文献   

5.
Several members of the new family A(1-x)M(4-x)Bi(11+x)Se21 (A = K, Rb, Cs; M = Sn, Pb) were prepared by direct combination of A2Se, Bi2Se3, Sn (or Pb), and Se at 800 degrees C. The single-crystal structures of K(0.54)Sn(3.54)Bi(11.46)Se21, K(1.46)Pb(3.08)Bi(11.46)Se21, Rb(0.69)Pb(3.69)Bi(11.31)Se21, and Cs(0.65)Pb(3.65)Bi(11.35)Se21 were determined. The compounds A(1-x)M(4-x)Bi(11+x) Se21 crystallize in a new structure type with the monoclinic space group C2/m, in which building units of the Bi2Te3 and NaCl structure type join to give rise to a novel kind of three-dimensional anionic framework with alkali-ion-filled tunnels. The building units are assembled from distorted, edge-sharing (Bi,Sn)Se6 octahedra. Bi and Sn/Pb atoms are disordered over the metal sites of the chalcogenide network, while the alkali site is not fully occupied. A grand homologous series Km(M6Se8)m(M(5+n)Se(9+n)) has been identified of which the compounds A(1-x)M(4-x)Bi(11+x)Se21 are members. We discuss here the crystal structure, charge-transport properties, and very low thermal conductivity of A(1-x)M(4-x)Bi(11+x)Se21.  相似文献   

6.
The closely related phases alpha- and beta-A(2)Hg(3)M(2)S(8) (A = K, Rb; M = Ge, Sn) have been discovered using the alkali polychalcogenide flux method and are described in detail. They present new structure types with a polar noncentrosymmetric crystallographic motif and strong nonlinear second-harmonic generation (SHG) properties. The alpha-allotropic form crystallizes in the orthorhombic space group Aba2 with a = 19.082(2) A, b = 9.551(1) A, c = 8.2871(8) A for the K(2)Hg(3)Ge(2)S(8) analogue, and a = 19.563(2) A, b = 9.853(1) A, c = 8.467(1) A for the K(2)Hg(3)Sn(2)S(8) analogue. The beta-form crystallizes in the monoclinic space group C2 with a = 9.5948(7) A, b = 8.3608(6) A, c = 9.6638(7) A, beta = 94.637 degrees for the K(2)Hg(3)Ge(2)S(8) analogue. The thermal stability and optical and spectroscopic properties of these compounds are reported along with detailed solubility and crystal growth studies of the alpha-Kappa(2)Hg(3)Ge(2)S(8) in K(2)S(8) flux. These materials are wide gap semiconductors with band gaps at approximately 2.40 and approximately 2.64 eV for the Sn and Ge analogues, respectively. Below the band gap the materials exhibit a very wide transmission range to electromagnetic radiation up to approximately 14 microm. alpha-K(2)Hg(3)Ge(2)S(8) shows anisotropic thermal expansion coefficients. SHG measurements, performed with a direct phase-matched method, showed very high nonlinear coefficient d(eff) for beta-K(2)Hg(3)Ge(2)S(8) approaching 20 pm/V. Crystals of K(2)Hg(3)Ge(2)S(8) are robust to air exposure and have a high laser-damage threshold.  相似文献   

7.
The new phases Ca(3)Pt(4+x)Ge(13-y) (x = 0.1; y = 0.4; space group I2(1)3; a = 18.0578(1) ?; R(I) = 0.063; R(P) = 0.083) and Yb(3)Pt(4)Ge(13) (space group P4(2)cm; a = 12.7479(1) ?; c = 9.0009(1) ?; R(I) = 0.061, R(P) = 0.117) are obtained by high-pressure, high-temperature synthesis and crystallize in new distortion variants of the Pr(3)Rh(4)Sn(13) type. Yb(3)Pt(4)Ge(13) features Yb in a temperature-independent non-magnetic 4f(14) (Yb(2+)) configuration validated by X-ray absorption spectra and resonant inelastic X-ray scattering data. Ca(3)Pt(4+x)Ge(13-y) is diamagnetic (χ(0) = -5.05 × 10(-6) emu mol(-1)). The Sommerfeld coefficient γ = 4.4 mJ mol(-1) K(-2) for Ca(3)Pt(4+x)Ge(13-y), indicates metallic properties with a low density of states at the Fermi level in good agreement with electronic structure calculation (N(E(F)) = 3.3 eV(-1)/f.u.)); the Debye temperature (θ(D)) is 398 K.  相似文献   

8.
Pyridineselenolate forms stable homoleptic coordination compounds of Sn(II), Sn(IV), and Pb(II). The complexes can be prepared either by metathesis or by insertion of the metal into the Se-Se bond of dipyridyl diselenide, and they are soluble in coordinating solvents such as pyridine. Isolation of the Pb(II) complex from both Pb(0) and Pb(IV) starting materials indicates that the pyridineselenolate ligand cannot stabilize Pb(IV). The compounds all sublime intact and decompose at elevated temperatures: the divalent complexes give MSe (M = Sn, Pb), while the Sn(IV) compound delivers SnSe(2). In order to isolate a crystalline Pb compound, the 3-trimethylsilyl-2-pyridineselenolate ligand was prepared. Attachment of the Me(3)Si functional group increases compound solubility, and leads to the isolation of crystalline Pb(3-Me(3)Si-2-SeNC(5)H(4))(2). The structure of [Sn(2-SeNC(5)H(4))(2)](2) (1) was determined by single-crystal X-ray diffraction and shown to be a dimer, with one chelating pyridineselenolate per Sn(II) and a pair of pyridineselenolates that asymmetrically span the two metal centers to form an eight membered (-Sn-Se-C-N-Sn-Se-C-N-) ring, with weak Sn-Se interactions connecting the dimeric units. Crystal data for 1 (Mo Kalpha, 298(2) K): orthorhombic space group Pbca, a = 8.214(1) ?, b = 21.181(3) ?, c = 14.628(2) ?.  相似文献   

9.
Six new actinide metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6) (I), K(10)Th(3)(P(2)S(7))(4)(PS(4))(2) (II), K(5)U(PS(4))(3) (III), K(5)Th(PS(4))(3) (IV), Rb(5)Th(PS(4))(3) (V), and Cs(5)Th(PS(4))(3) (VI). Compound I crystallizes in the monoclinic space group P2(1)/c with a = 33.2897(1) A, b = 14.9295(1) A, c = 17.3528(2) A, beta = 115.478(1) degrees, Z = 8. Compound II crystallizes in the monoclinic space group C2/c with a = 32.8085(6) A, b = 9.0482(2) A, c = 27.2972(3) A, beta = 125.720(1) degrees, Z = 8. Compound III crystallizes in the monoclinic space group P2(1)/c with a = 14.6132(1) A, b = 17.0884(2) A, c = 9.7082(2) A, beta = 108.63(1) degrees, Z = 4. Compound IV crystallizes in the monoclinic space group P2(1)/n with a = 9.7436(1) A, b = 11.3894(2) A, c = 20.0163(3) A, beta = 90.041(1) degrees, Z = 4, as a pseudo-merohedrally twinned cell. Compound V crystallizes in the monoclinic space group P2(1)/c with a = 13.197(4) A, b = 9.997(4) A, c = 18.189(7) A, beta = 100.77(1) degrees, Z = 4. Compound VI crystallizes in the monoclinic space group P2(1)/c with a = 13.5624(1) A, b = 10.3007(1) A, c = 18.6738(1) A, beta = 100.670(1) degrees, Z = 4. Optical band-gap measurements by diffuse reflectance show that compounds I and III contain tetravalent uranium as part of an extended electronic system. Thorium-containing compounds are large-gap materials. Raman spectroscopy on single crystals displays the vibrational characteristics expected for [PS(4)](3)(-), [P(2)S(7)](4-), and the new [P(3)S(10)](5)(-) building blocks. This new thiophosphate building block has not been observed except in the structure of the uranium-containing compound Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6).  相似文献   

10.
An alkali-metal sulfur reactive flux has been used to synthesize a series of quaternary rare-earth metal compounds. These include KLaP(2)S(6) (I), K(2)La(P(2)S(6))(1/2)(PS(4)) (II), K(3)La(PS(4))(2) (III), K(4)La(0.67)(PS(4))(2) (IV), K(9-x)La(1+x/3)(PS(4))(4) (x = 0.5) (V), K(4)Eu(PS(4))(2) (VI), and KEuPS(4) (VII). Compound I crystallizes in the monoclinic space group P2(1)/c with the cell parameters a = 11.963(12) A, b = 7.525(10) A, c = 11.389(14) A, beta = 109.88(4) degrees, and Z = 4. Compound II crystallizes in the monoclinic space group P2(1)/n with a = 9.066(6) A, b = 6.793(3) A, c = 20.112(7) A, beta = 97.54(3) degrees, and Z = 4. Compound III crystallizes in the monoclinic space group P2(1)/c with a= 9.141(2) A, b = 17.056(4) A, c = 9.470(2) A, beta = 90.29(2) degrees, and Z = 4. Compound IV crystallizes in the orthorhombic space group Ibam with a = 18.202(2) A, b = 8.7596(7) A, c = 9.7699(8) A, and Z = 4. Compound V crystallizes in the orthorhombic space group Ccca with a = 17.529(9) A, b = 36.43(3) A, c = 9.782(4) A, and Z = 8. Compound VI crystallizes in the orthorhombic space group Ibam with a = 18.29(5) A, b = 8.81(2) A, c= 9.741(10) A, and Z = 4. Compound VII crystallizes in the orthorhombic space group Pnma with a = 16.782(2) A, b = 6.6141(6) A, c = 6.5142(6) A, and Z = 4. The sulfur compounds are in most cases isostructural to their selenium counterparts. By controlling experimental conditions, these structures can be placed in quasi-quaternary phase diagrams, which show the reaction conditions necessary to obtain a particular thiophosphate anionic unit in the crystalline product. These structures have been characterized by Raman and IR spectroscopy and UV-vis diffuse reflectance optical band gap analysis.  相似文献   

11.
The quaternary K(x)Sn(6-2x)Bi(2+x)Se(9) and KSn(5)Bi(5)Se(13) were discovered from reactions involving K(2)Se, Bi(2)Se(3), Sn, and Se. The single crystal structures reveal that K(x)Sn(6-2x)Bi(2+x)Se(9) is isostructural to the mineral heyrovskyite, Pb(6)Bi(2)S(9), crystallizing in the space group Cmcm with a = 4.2096(4) A, b = 14.006(1) A, and c = 32.451(3) A while KSn(5)Bi(5)Se(13) adopts a novel monoclinic structure type (C2/m, a = 13.879(4) A, b = 4.205(1) A, c = 23.363(6) A, beta = 99.012(4) degrees ). These compounds formally belong to the lillianite homologous series xPbS.Bi(2)S(3), whose characteristic is derivation of the structure by tropochemical cell-twinning on the (311) plane of the NaCl-type lattice with a mirror as twin operation. The structures of K(x)Sn(6-2x)Bi(2+x)Se(9) and KSn(5)Bi(5)Se(13) differ in the width of the NaCl-type slabs that form the three-dimensional arrangement. While cell-twinning of 7 octahedra wide slabs results in the heyrovskyite structure, 4 and 5 octahedra wide slabs alternate in the structure of KSn(5)Bi(5)Se(13). In both structures, the Bi and Sn atoms are extensively disordered over the metal sites. Some physicochemical properties of K(x)Sn(6-2x)Bi(2+x)Se(9) and KSn(5)Bi(5)Se(13) are reported.  相似文献   

12.
Kong F  Jiang HL  Hu T  Mao JG 《Inorganic chemistry》2008,47(22):10611-10617
Two novel alkali(I) borogermanates with noncentrosymmetric structures, namely, CsB 3GeO 7 and K 2B 2Ge 3O 10, have been synthesized by high-temperature solid-state reactions in a platinum crucible. The structure of CsB 3GeO 7 features a novel three-dimensional (3D) framework composed of cyclic B 3O 7 (5-) groups that are interconnected by Ge(IV) cations, whereas the structure of K 2B 2Ge 3O 10 is a new 3D network based on cap-shaped [Ge 3B 2O 14] (10-) clusters that are interconnected via Ge-O-B bridges. CsB 3GeO 7 exhibits a second-harmonic generation (SHG) response that is about 1.5 times that of KDP (KH 2PO 4), whereas the SHG signal of K 2B 2Ge 3O 10 is very weak. Both compounds are insulators and transparent in the range of 300-5000 nm. The electronic structure calculations for both compounds also have been performed.  相似文献   

13.
The reaction of K(2)Sn(2)Q(5) (Q = S, Se, Te) with stoichiometric amounts of alkyl-ammonium bromides R(4)NBr (R = methyl or ethyl) in ethylenediamine (en) afforded the corresponding salts (R(4)N)(4)[Sn(4)Q(10)] (Q = S, Se, Te) in high yield. Although the compound K(2)Sn(2)Te(5) is not known, this reaction is also applicable to solids with a nominal composition "K(2)Sn(2)Te(5)" which in the presence of R(4)NBr in en are quantitatively converted to the salts (R(4)N)(4)[Sn(4)Te(10)] on a multigram scale. These salts contain the molecular adamantane clusters [Sn(4)Q(10)](4-) and can serve as soluble precursors in simple metathesis reactions with transition metal salts to synthesize the large family of open-framework compounds (Me(4)N)(2)M[Sn(4)Se(10)] (M = Mn(2+), Fe(2+), Co(2+), Zn(2+)). Full structural characterization of these materials as well as their magnetic and optical properties is reported. Depending on the transition metal in (Me(4)N)(2)M[Sn(4)Se(10)], the energy band gaps of these compounds lie in the range of 1.27-2.23 eV. (Me(4)N)(2)Mn[Ge(4)Te(10)] is the first telluride analogue to be reported in this family. This material is a narrow band gap semiconductor with an optical absorption energy of 0.69 eV. Ab initio electronic band structure calculations validate the semiconductor nature of these chalcogenides and indicate a nearly direct band gap.  相似文献   

14.
Kwon YU  Lee KS  Kim YH 《Inorganic chemistry》1996,35(5):1161-1167
Hydrothermal reactions in the V(2)O(5)-SeO(2)-AOH systems (A = Na, K, Rb, Cs, NH(4)) were studied with various reagent mole ratios. Typical millimole ratios were V(2)O(5)/SeO(2)/AOH = 5 or 3/15/x in 10-mL aqueous solutions, where x was 5, 10, 15, and 20. The reactions with x = 5 for A = K, Rb, Cs, and NH(4) at 230 degrees C produced single-phase products of the general formula AV(3)Se(2)O(12) with the (NH(4))(VO)(3)(SeO(3))(2) structure type. The x = 15 reactions for A = Rb and Cs yielded AVSeO(5) phases with a new structure type. The crystal structure for CsVSeO(5) was determined with X-ray single-crystal diffraction techniques to be monoclinic (P2(1) (No. 4), a = 7.887(3) ?, b = 7.843(2) ?, c = 9.497(3) ?, beta = 92.13(3) degrees, Z = 4). The structure of this compound consists of interwoven helixes extended in all three directions. The spires are composed of alternating SeO(3) and VO(5) units sharing common-edge oxygens in all three directions. For A = K and NH(4), the reactions of this mole ratio did not produce any identifiable phases. Each of the compounds is characterized by powder X-ray diffraction, infrared spectroscopic, and thermogravimetric techniques. The dependency of the synthesis results on the reaction conditions is discussed and rationalized.  相似文献   

15.
The compounds Pb(2)La(x)Bi(8-x)S(14) (I), Sr(2)La(x)Bi(8-x)S(14) (II), and Cs(2)La(x)Bi(10-x)S(16) (III) were synthesized from the corresponding elements or binary sulfides at temperatures above 850 degrees C. Compounds I and II are isostructural, forming a new structure type, while the structure of III is related to the structure of the mineral kobellite. All compounds crystallize in the orthorhombic space group Pnma (No. 62) with a = 21.2592(4) A, b = 4.0418(1) A, c = 28.1718(3) A, Z = 4 for I, a = 21.190(1) A, b = 4.0417(2) A, c = 28.285(2) A, Z = 4 for II and a = 34.893(4) A, b = 4.0697(4) A, c = 21.508(2) A, Z = 4 for III. All compounds exhibit mixed site occupancy between Bi and La. Furthermore, I and II exhibit disorder between the divalent atom (Sr or Pb) and/or La and/or Bi. The structures of I and II consist of thin walls made of two metal-atom-thick NaCl-type blocks running in two opposite directions in the ac plane, forming rhombus-shaped tunnels. These tunnels are filled with Bi(2)Te(3)-type fragments. In the points where the walls intersect they form Gd(2)S(3)-type fragments. The structure of III consists of a complex three-dimensional framework with Cs-filled tunnels. All compounds are semiconductors with band gaps around 1.0 eV, and they melt around 740-860 degrees C.  相似文献   

16.
We have searched for new species of small oxygen-containing gas-phase dianions produced in a secondary ion mass spectrometer by Cs+ ion bombardment of solid samples with simultaneous exposure of their surfaces to O2 gas. The targets were a pure zinc metal foil, a copper-contaminated zinc-based coin, two silicon-germanium samples (Si(1-x)Ge(x)(with x= 6.5% or 27%)) and a piece of titanium metal. The novel dianions Zn3O(4)(2-), Zn4O(5)(2-), CuZn2O(4)(2-), Si2GeO(6)(2-), Ti2O(5)(2-) and Ti3O(7)(2-) have been observed at half-integer m/z values in the negative ion mass spectra. The heptamer dianions Zn3O(4)(2-) and Ti2O(5)(2-) have been unambiguously identified by their isotopic abundances. Their flight times through the mass spectrometer are approximately 20 micros and approximately 17 micros, respectively. The geometrical structures of the two heptamer dianions Ti2O(5)(2-), and Zn3O(4)(2-) are investigated using ab initio methods, and the identified isomers are compared to those of the novel Ge2O(5)(2-) and the known Si2O(5)(2-) and Be3O(4)(2-) dianions.  相似文献   

17.
Two low-dimensional compounds, KSnAsS(5) and K(2)SnAs(2)S(6), were prepared using liquid polythioarsenate salts, and the results differ from those obtained with the well studied thiophosphate flux. KSnAsS(5) crystallizes in the orthorhombic space group Pbam with cell parameters of a = 8.136(2) A, b = 13.784(4) A, c = 7.428(2) A. KSnAsS(5) features the unusual pyramidal species [AsS(2)(S(2))](3-). K(2)SnAs(2)S(6) crystallizes in the trigonal space group P3 macro with cell parameters a = 6.717(5) A, b = 7.204(8) A, gamma = 120 degrees. The compounds were obtained by controlling the Lewis basicity of the K(2)S/As(2)S(3)/S flux. The optical, thermal, and spectroscopic properties of the compounds are reported.  相似文献   

18.
Wu Y  Bensch W 《Inorganic chemistry》2008,47(17):7523-7534
Four new quaternary alkali neodymium thiophosphates K 9Nd[PS 4] 4 ( 1), K 3Nd[PS 4] 2 ( 2), Cs 3Nd[PS 4] 2 ( 3), and K 3Nd 3[PS 4] 4 ( 4) were synthesized by reacting Nd with in situ formed fluxes of K 2S 3 or Cs 2S 3, P 2S 5 and S in appropriate molar ratios at 973 K. Their crystal structures are determined by single crystal X-ray diffraction. Crystal data: 1: space group C2/ c, a = 20.1894(16), b = 9.7679(5), c = 17.4930(15) A, beta = 115.66(1) degrees , and Z = 4; 2: space group P2 1/ c, a = 9.1799(7), b = 16.8797(12), c = 9.4828(7) A, beta = 90.20(1) degrees , and Z = 4; 3: space group P2 1/ n, a = 15.3641(13), b = 6.8865(4), c = 15.3902(13) A, beta = 99.19(1) degrees , and Z = 4; 4: space group C2/ c, a = 16.1496(14), b = 11.6357(7), c = 14.6784(11) A, beta = 90.40(1) degrees , and Z = 4. The structure of 1 is composed of one-dimensional (1) infinity{Nd[PS 4] 4} (9-) chains and charge balancing K (+) ions. Within the chains, eight-coordinated Nd (3+) ions, which are mixed with K (+) ions, are connected by [PS 4] (3-) tetrahedra. The crystal structures of 2 and 3 are characterized by anionic chains (1) infinity{Nd[PS 4] 2} (3-) being separated by K (+) or Cs (+) ions. Along each chain the Nd (3+) ions are bridged by [PS 4] (3-) anions. The difference between the structures of 2 and 3 is that in 2 the Nd (3+) ions are coordinated by four edge-sharing [PS 4] (3-) tetrahedra while in 3 each Nd (3+) ion is surrounded by one corner-sharing, one face-sharing, and two edge-sharing [PS 4] (3-) tetrahedra. The structure of 4 is a three-dimensional network with K (+) cations residing in tunnels running along [110] and [110]. The {Nd(1)S 8} polyhedra share common edges with four [PS 4] tetrahedra forming one-dimensional chains (1) infinity{Nd[PS 4] 2} (3-) running along [110] and [110]. The chains are linked by {Nd(2)S 8} polyhedra yielding the final three-dimensional network (3) infinity{Nd[PS 4] 2} (3-). The internal vibrations of both crystallographically independent [PS 4] (3-) anions of 2- 4 have been assigned in the range 200-650 cm (-1) by comparison of their corresponding far/mid infrared and Raman spectra (lambda exc = 488 nm) on account of locally imposed C 1 symmetry. In the Fourier-transform-Raman spectrum (lambda exc = 1064 nm) of 2- 4, very similar well-resolved electronic Raman (ER) transitions from the electronic Nd (3+) ground-state to two levels of the (4)I 9/2 ground manifold and to the six levels of the (4)I 11/2 manifold have been determined. Resonant Raman excitation via a B-term mechanism involving the (4)I 15/2 and (4)F 3/2 intermediate states may account for the significant intensity enhancement of the ER transitions with respect to the symmetric P-S stretching vibration nu 1. Broad absorptions in the UV/vis/NIR diffuse reflectance spectrum at 293 K in the range 5000-25000 cm (-1) of 2- 4 are attributed to spin-allowed excited quartet states [ (4)(I < F < S < G < D)] and spin-forbidden doublet states [ (2)(H < G < K < D < P)] of Nd (3+). A luminescense spectrum of 3 obtained at 15 K by excitation with 454.5 nm shows multiplets of narrow lines that reproduce the Nd (3+) absorptions. Sharp and intense luminescence lines are produced instead by excitation with 514.5 nm. Lines at 18681 ( (4)G 7/2), 16692 ( (4)G 5/2), 14489 ( (4)F 9/2), and 13186 cm (-1) ( (4)F 7/2) coincide with the corresponding absorptions. Hypersensitive (4)G 5/2 is split by 42 cm (-1). The most intense multiplet at about 16500 cm (-1) is assigned to the transition from (4)G 5/2 to the Stark levels of the ground manifold (4)I 9/2.  相似文献   

19.
The binary systems Ca-Sn, Ba-Sn, Eu-Sn, Yb-Sn, Sr-Pb, Ba-Pb, and Eu-Pb do not contain Cr(5)B(3)-like A(5)Tt(3) phases when care is taken to exclude hydrogen from the reactions (Tt = tetrel, Si-Pb). All form ternary A(5)Tt(3)H(x)() phases (x < or = 1) with "stuffed" Cr(5)B(3)-like structures instead, and all of those tested, Ca-Sn, Ba-Sn, Sr-Pb, and Ba-Pb, also yield the isostructural A(5)Tt(3)F. The structures and compositions of Ca(5)Sn(3)H(x), Ca(5)Sn(3)F(0.89), Eu(5)Sn(3)H(x), and Sr(5)Pb(3)F have been refined from single-crystal X-ray diffraction data and of Ca(5)Sn(3)D from powder neutron data. The interstitial H, F atoms are bound in a tetrahedral (A(2+))(4) cavity in a Cr(5)B(3)-type metal atom structure. Nine previous reports of binary "Ba(5)Sn(3)", "Yb(5)Sn(3)", "Sr(5)Pb(3)", and "Ba(5)Pb(3)" compounds were wrong and presumably concerned the hydrides. The new ternary phases are generally Pauli-paramagnetic, evidently with pi electrons from the characteristic tetrelide dimers in this structure type at least partially delocalized into the conduction band. The Sn-Sn bonds appear correspondingly shortened on oxidation. Other new phases reported are CaSn (CrB type), Yb(5)Sn(4)H(x) (Sm(5)Ge(4)), YbSn ( approximately TlTe), Ba(5)Pb(3) ( approximately W(5)Si(3)), and Yb(31)Pb(20) (Ca(31)Sn(20)).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号