首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用相干衍射辐射(CDR)光学自相关技术在线无阻拦频域测量超短电子束团的长度是当前国际束测领域的研究热点. 文中分析和数值计算了利用上海应用物理研究所(SINAP)飞秒电子束装置提供的超短电子束团产生的宽带连续强CDR,介绍了超短电子束团长度测量的实验原理和装置示意,并研究了分束器对束团长度测量的影响. 结果表明,该束团可直接用于产生覆盖远红外至毫米波段的宽带连续强CDR;辐射能量主要集中在轴线附近,宏脉冲辐射能量可达毫焦耳量级;利用光学自相关技术研制的远红外Michelson干涉仪和Golay探测仪组成束团长度测量系统,通过实验测量CDR干涉图FWHM可近似求得超短束团长度;干涉图籍助傅立叶变换光谱法,可推算求得束团电子密度分布的信息.  相似文献   

2.
Bunch lengthening phenomenon is resulted from one of the most severe single bunch instabilities in storage rings. We develop a new code to calculate the single bunch length and energy spread in storage rings using FORTRAN. In this code, wake field is calculated using an analytical formula, which is different from the previous ones. The bunch length and energy spread under different bunch currents are calculated for BEPCII by using this code, and the tracking results are in good agreement with those from other codes. The calculated energy spread clearly shows that the longitudinal microwave instability threshold is around 65 mA for BEPCII storage ring.  相似文献   

3.
The electron cloud accumulated in the vicinity of positron beam generates longitudinal electric field during the passage of bunch. The longitudinal interaction between bunch and electron cloud can lead to the distortion of the bunch shape. We use a simple analytic formula to calculate the longitudinal electric field due to electron cloud. Based on the longitudinal wake field, the macro-particle tracking method is used to simulate the variation of bunch longitudinal profile in different electron cloud densities and the simulation also shows that the synchrotron oscillation tune is slightly shifted by the wake field. By comparing the simulation results and the analytical estimation from potential distortion theory, the longitudinal wake field from electron cloud can be seen as a potential well effect.  相似文献   

4.
The feasibility of the laser photocathode RF gun, BNL/GUN-IV, as an injector for a laser plasma accelerator was investigated at the subpicosecond S-band twin linac system of the Nuclear Engineering Research Laboratory, University of Tokyo. Electron beam energy of 16 MeV, emittance of 6π mm mrad, bunch length of 240 fs (FWHM), and charge per bunch of 350 pC were confirmed at 10 Hz. As for diagnosis of the femtosecond electron bunch, the quantitative comparison of performance of the femtosecond streak camera, the coherent transition radiation (CTR) Michelson interferometer, and the far-infrared polychromator was carried out. We concluded that the streak camera is the most reliable up to 200 fs and that the polychromator is the best for the shorter electron bunch. The 3.5-ps (rms) resolved synchronization between the YLF laser driver for the gun and the electron bunch was achieved. Based on the above experiences, we have designed and installed a much better laser-electron synchronization system using the Kerr-lens mode-locked Ti:Sapphire laser with the min harmonics synchrolocker and the stable 15-MW klystron. The timing jitter is expected to be suppressed down to 320 fs (rms)  相似文献   

5.
The experimental result of terahertz (THz) coherent transition radiation generated from an ultrashort electron bunching beam is reported.During this experiment,the window for THz transmission from ultrahigh vacuum to free air is tested.The compact measurement system which can simultaneously test the THz wave power and frequency is built and proofed.With the help of improved Martin-Puplett interferometer and Kramers-Krong transform,the longitudinal bunch length is measured.The results show that the peak power of THz radiation wave is more than 80 kW,and its radiation frequency is from 0.1 THz to 1.5 THz.  相似文献   

6.
The Forschungszentrum Dresden-Rossendorf provides an intense pulsed 40 MeV electron beam with high brilliance and low emittance (ELBE). The pulse has a length of 1-10 ps and a repetition time of 77 ns, or in slow mode 616 ns. The EPOS system (ELBE Positron Source) generates by pair production on a tungsten converter and a tungsten moderator an intense pulsed beam of mono-energetic positrons. To transport the positrons to the laboratory (12 m) we constructed a magnetic beam guidance system with a longitudinal magnetic field of 75 G. In the laboratory outside the cave, the positron beam is chopped and bunched according to the time structure, because the very sharp bunch structure of the electron pulses is broadened for the positron beam due to transport and moderation.  相似文献   

7.
The spectrum of coherent transition radiation has been recorded with the use of a Martin–Puplett interferometer. It has been shown that the spectrum includes monochromatic lines that are caused by the modulation of an electron beam with the frequency of an accelerating radio-frequency field νRF and correspond to resonances at ν k = kνRF k ≤ 10. To determine the length of an electron bunch from the measurement of the spectrum from a single bunch, it is necessary to use a spectrometer with the resolution Δνsp > νRF.  相似文献   

8.
Based on the femtosecond accelerator device which was built at the Shanghai Institute of Applied Physics (SINAP), recently a modified far infrared Michelson interferometer has been developed to measure the length of electron bunches via the optical autocorrelation method.Compared with our former normal Michelson interferometer, we use a hollow retroreflector instead of a flat mirror as the reflective mirror.The experimental setup and results of the bunch length measurement will be described in this paper.  相似文献   

9.
The 0.1 THz coherent synchrotron radiation (CSR) was successfully generated in the 90° bending magnet of the compact S-band linac with the achromatic arc section using the ultra-short electron bunch which has the energy of 40 MeV, the bunch charge of about 1nc and the bunch length less than 1 ps (rms). The electron bunch compression of 1 nC electron bunch was achieved less than 1 ps (rms) by controlling the Q-magnets in the achromatic arc section as the bunch length was measured by the rms bunch length monitor.  相似文献   

10.
We have measured the coherent optical transition radiation emitted by an electron beam from laser-plasma interaction. The measurement of the spectrum of the radiation reveals fine structures of the electron beam in the range 400-1000 nm. These structures are reproduced using an electron distribution from a 3D particle-in-cell simulation and are attributed to microbunching of the electron bunch due to its interaction with the laser field. When the radiator is placed closer to the interaction point, spectral oscillations have also been recorded, signature of the interference of the radiation produced by two electron bunches delayed by 74 fs. The second electron bunch duration is shown to be ultrashort to match the intensity level of the radiation. Whereas transition radiation was used at longer wavelengths in order to estimate the electron bunch length, this study focuses on the ultrashort structures of the electron beam.  相似文献   

11.
The formal expression of the spectral distribution of the transition radiation intensity will be here derived in the case of a relativistic three-dimensional charged beam. Charged beams with a particle density such as is typically encountered in a particle accelerator will be considered. In particular, a sufficiently high particle density will be supposed so that a continuous spatial distribution function can be reliably attributed to the charged bunch. The formula of the spectral distribution of the transition radiation intensity originated by a relativistic three-dimensional charged beam - already presented in a previous work - will be here submitted to a formal check and interpreted in the physical consequences. The present work contains an additional mathematical derivation of the radiation energy spectrum consisting in a different method to implement the continuous limit in the distribution function of the particle coordinates. In the former derivation of the formula, the average operation with respect to the continuous distribution function of the particle coordinates was applied to the radiation intensity of a N electron bunch. In the present one, it is applied to the radiation electric field of a N electron bunch. The comparison of the two alternative but in any case equivalent formal routes to the spectral distribution of the transition radiation intensity will offer the possibility to directly cross-check the mathematical self-consistency of the presented results within the limits of applicability of the continuous limit approximation. According to such results, both the flux and the angular distribution of the photons emitted at a given wavelength - even shorter than the longitudinal length of the bunch - are expected to undergo a modification as the beam transverse size is varied with respect to the observed wavelength. As a function of the beam transverse size the spatial coherence degree of the transition radiation source is thus expected to change. The physical consistency of such an effect occurring in the transition radiation emission by a charged beam can be argued on the basis of a compatibility criterion with other similar relativistic electromagnetic radiative phenomena and interpreted in the framework of the temporal causality and the Huygens-Fresnel principles. Finally, the aspect of the applicability of the continuous limit approximation to the case of a charged beam in a particle accelerator is treated in terms of a practical quantitative criterion.  相似文献   

12.
The process of Thomson scattering of an ultra-intense laser pulse by a relativistic electron bunch has been proposed as a way to obtain a bright source of short, tunable and quasi-monochromatic X-ray pulses. The real applicability of such a method depends crucially on the electron-beam quality, the angular and energetic distributions playing a relevant role. In this paper we present the computation of the Thomson-scattered radiation generated by a plane-wave, linearly polarized and flat-top laser pulse, incident on a counterpropagating electron bunch having a sizable angular divergence and a generic energy distribution. Both linear and nonlinear Thomson-scattering regimes are considered and the impact of the rising front of the pulse on the scattered-radiation distribution has been taken into account. Simplified relations valid for long laser pulses and small values of both scattering angle and bunch divergence are also reported. Finally, we apply the results to the cases of backscattering with electron bunches typically produced with both standard radio-frequency-based accelerators and laser–plasma accelerators.  相似文献   

13.
Narrow-band THz coherent Cherenkov radiation can be driven by a subpicosecond electron bunch traveling along the axis of a hollow cylindrical dielectric-lined waveguide. We present a scheme of compact THz radiation source based on the photocathode rf gun. On the basis of our analytic result, the subpicosecond electron bunch with high charge (800 pC) can be generated directly in the photocathode rf gun. According to the analytical and simulated results, a narrow emission spectrum peaked at 0.24 THz with 2 megawatt (MW) peak power is expected to gain in the proposed scheme (the length of the facility is about 1.2 m).  相似文献   

14.
Different methods for diagnostics of ultrashort electron bunches are developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects and JINR participation in the ILC project. The main peculiarity of these accelerator complexes is related to formation of ultrashort electron bunches with r.m.s. length 20–300 μm. Novel diagnostics is required to provide femtoscaie time resolution in the modem FEL like FLASH and future XFEL and ILC projects. Photon diagnostics developed at JINR-DESY collaboration for ultrashort bunches is based on calorimetric measurements and detection of undulator radiation. The MCP-based radiation detectors are effectively used at FLASH for pulse energy measurements. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. Two-color lasing in pump-probe experiments permits one to investigate dynamics of atomic and molecular systems with time resolution of 100–500 fs. A special magnetic spectrometer is planning to be used at ILC for measurements of average electron energy in each bunch. The first test spectrometer measurements were performed within the JINR-DESY-SLAC collaboration. A special synchrotron radiation detector applied for measurement of bunch average electron energy was constructed at JINR.  相似文献   

15.
This paper contains studies of the operation of a one-dimensional storage ring free-electron laser (FEL) using a Monte Carlo technique to generate the electron energy fluctuations produced by the FEL. The energy and phase equations of motion have been numerically integrated to calculate equilibrium values of: a) electron energy spread, b) electron phase spread (e.g. electron bunch length), and c) efficiency of conversion of electron energy into laser radiation. The operation of the storage ring free-electron laser was studied for five different FEL magnet designs. It is found that a “one-dimensional” storage ring free-electron laser can operate on a steady-state basis only with reduced overall efficiency due to the inability of the system to damp effectively the electron energy fluctuations produced by the FEL. Results of operation of a SRFEL in a pulsed mode are also presented. Work supported by U.S. Army BMD-ATC, under contract number DASG 60-77-C-0083.  相似文献   

16.
EPOS (the ELBE POsitron Source) is a running project to build an intense, bunched positron beam for materials research. It makes use of the bunched electron beam of the ELBE radiation source (Electron Linac with high Brilliance and low Emittance) at the Research Centre Dresden-Rossendorf (40 MeV, 1 mA). ELBE has unique timing properties, the bunch length is <5 ps and the repetition time is 77 ns. In contrast to other Linacs made for Free Electron Lasers (e.g., TTF at DESY, Hamburg), ELBE can be operated in full cw-mode, i.e., with an uninterrupted sequence of bunches. The article continues an earlier publication. It concentrates on details of the timing system and describes issues of radiation protection.  相似文献   

17.
The Compact ERL is an energy recovery LINAC (ERL) test facility that is planned for KEK. The circumference of the recirculation path will be 70 m. Initially, the beam energy will be about 65 MeV and the current about 10 mA. Although the primary purpose of the machine is to aid the development of the key technologies that are essential for building an ultra-brilliant new synchrotron light source based on an ERL, the Compact ERL itself has great potential as an intense source of terahertz radiation. To generate the intense terahertz radiation, an electron bunch of a very short bunch length is required and bunch compression is inevitable. We discuss the parameters of the Compact ERL, present the results of a simulation of bunch compression, and make an estimate of the generated coherent synchrotron radiation.  相似文献   

18.
Tunable and compact high power terahertz (THz) radiation based on coherent radiation (CR) of the picosecond relativistic electron bunch train is under development at the Tsinghua accelerator lab. Coherent synchronization radiation (CSR) and coherent transition radiation (CTR) are researched based on an S-band compact electron linac, a bending magnet or a thin foil. The bunch train’s form factors, which are the key factor of THz radiation, are analyzed by the PARMELA simulation. The effects of electron bunch trains under different conditions, such as the bunch number, bunch charges, micro-pulses inter-distance, and accelerating gradient of the gun are investigated separately in this paper. The optimal radiated THz power and spectra should take these factors as a whole into account.  相似文献   

19.
A wake field excited by a relativistic electron bunch in a semi-infinite metal waveguide filled with a dielectric consists of the Vavilov-Cherenkov radiation, the “quenching”-wave field, and transient radiation, which interfere with each other. An exact analytic expression for the transient component of the field of a thin relativistic annular bunch is derived for the first time. The evolution of the space distribution of a field excited by a finite-size electron bunch is numerically calculated. The excitation of the wake field by a periodic train of electron bunches in a finite-length waveguide is studied.  相似文献   

20.
The Electro-optical sampling delay scanning technique can be used for electron beam bunch length measurement.A novel non-synchronous delay scanning technique based on the electro-optical sampling measurements is presented.Based on Beijing Free Electron Laser(BFEL),the electron beam bunch length was measured with the electro-optical sampling technique for the first time in China.The result shows that the electron beam bunch length at BFEL is about 5.6±1.2 ps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号