首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We report on a microwave oscillator based on Bloch oscillations of electrons in a semiconductor superlattice. Our GaAs/AlAs superlattice, at room temperature, was coupled electromagnetically by an antenna to a rectangular cavity resonator, and was operated at a current-voltage state of negative differential conductance. We observed generation of microwave radiation at frequencies, depending on the resonator length, between 7 and 30 GHz. Electronic tuning by several percent was possible; the ratio of linewidth to frequency was of the order of 10?4. A radiation power up to 1 μW (at 10 GHz) was obtained, corresponding to a generator efficiency of the order of 10?3 for the conversion of electrical power to microwave radiation.  相似文献   

4.
The coherent Hall effect denotes the transient Hall response of impulsively excited coherent charge-carrier wave packets in a solid. We report the first experimental study of this phenomenon (i) using a semiconductor superlattice in crossed electric and magnetic fields as a model for three-dimensional materials and (ii) employing a contactless optoelectronic technique to probe the transient currents. Two field regimes with distinctly different oscillatory wave packet dynamics are found, separated from each other by a transition region where all oscillations are suppressed.  相似文献   

5.
The conversion of the carrier frequency of electromagnetic pulses in lateral semiconductor superlattices, associated with the excitation of Bloch oscillations in the superlattice, is studied theoretically. Conditions are found that are necessary for the observation of the radiation of a Bloch oscillator. The energy characteristics of the efficiency of frequency multiplication and the spectral distribution of the radiation transmitted through the superlattice are calculated. It is shown that low-frequency collisions of electrons do not suppress the excitation of Bloch oscillations, which can be observed under the interaction of the superlattice not only with a pulsed, but also with a continuous-wave signal.  相似文献   

6.
The recent growth of semiconductor nanowire superlattices encourages hope that Bloch-like oscillations in such structures formed into rings may soon be observed in the presence of a time-dependent magnetic flux threading the ring. These magnetic Bloch oscillations are a consequence of Faraday's law; the time-dependent flux produces an electromotive force around the ring, thus leading to the Bloch-like oscillations. In the spectroscopic domain, generalized Wannier-Stark states are found that are manifestations of the emf-induced localization of the states.  相似文献   

7.
We report on a theoretical analysis of terahertz (THz-) field induced nonlinear dynamics of electrons in a semiconductor superlattice that are capable to perform Bloch oscillations. Our results suggest that for a strong THz-field a dc voltage should be generated. We have analyzed the real-time dynamics using a balance equation approach to describe the electron transport in a superlattice miniband. Taking account of both Bloch oscillations of electrons in a superlattice miniband and dissipation, we studied the influence of a strong THz-field on currently available superlattices at room temperature. We found that a THz-field can lead to a negative conductance resulting in turn in a THz-field induced dc voltage, and that the voltage per superlattice period should show, for varying amplitue of the THz-field, a form of wisted plateaus with the middle points being with high precision equal to the photon energy divided by the electron charge. We show voltage to the finite voltage state, and that in the finite voltage state dynamic localization of the electrons in a miniband occurs.  相似文献   

8.
We report the observation of frequency multiplication of microwave radiation in a GaAs/AlAs semiconductor superlattice at room temperature. We observed, for a fundamental frequency of 9 GHz, second and third harmonic generation. We associate the harmonic generation with a nonlinear current-voltage characteristic that is determined by Bloch oscillations of electrons propagating along the superlattice axis. Our results suggest for the frequency multiplication an upper limit in the tetrahertz frequency range.  相似文献   

9.
10.
11.
12.
13.
14.
In this Letter, we show that the strong coupling between a disordered set of molecular emitters and surface plasmons leads to the formation of spatially coherent hybrid states extended on macroscopic distances. Young-type interferometric experiments performed on a system of J-aggregated dyes spread on a silver layer evidence the coherent emission from different molecular emitters separated by several microns. The coherence is absent in systems in the weak-coupling regime demonstrating the key role of the hybridization of the molecules with the plasmon.  相似文献   

15.
Stark-cyclotron resonance in a semiconductor superlattice   总被引:1,自引:0,他引:1  
  相似文献   

16.
We present a finite difference method to solve a new type of nonlocal hydrodynamic equations that arise in the theory of spatially inhomogeneous Bloch oscillations in semiconductor superlattices. The hydrodynamic equations describe the evolution of the electron density, electric field and the complex amplitude of the Bloch oscillations for the electron current density and the mean energy density. These equations contain averages over the Bloch phase which are integrals of the unknown electric field and are derived by singular perturbation methods. Among the solutions of the hydrodynamic equations, at a 70 K lattice temperature, there are spatially inhomogeneous Bloch oscillations coexisting with moving electric field domains and Gunn-type oscillations of the current. At higher temperature (300 K) only Bloch oscillations remain. These novel solutions are found for restitution coefficients in a narrow interval below their critical values and disappear for larger values. We use an efficient numerical method based on an implicit second-order finite difference scheme for both the electric field equation (of drift-diffusion type) and the parabolic equation for the complex amplitude. Double integrals appearing in the nonlocal hydrodynamic equations are calculated by means of expansions in modified Bessel functions. We use numerical simulations to ascertain the convergence of the method. If the complex amplitude equation is solved using a first order scheme for restitution coefficients near their critical values, a spurious convection arises that annihilates the complex amplitude in the part of the superlattice that is closer to the cathode. This numerical artifact disappears if the space step is appropriately reduced or we use the second-order numerical scheme.  相似文献   

17.
Large coherent acoustic phonon oscillations were demonstrated using InGaN/GaN multiple quantum wells with piezoelectric fields. With UV femtosecond pulse excitation, photogenerated carriers screened the piezoelectric field and initiated the displacive coherent phonon oscillations. The specific phonon frequency was selected by the coupling between the periodic carrier distribution and the corresponding acoustic phonon mode. The induced acoustic phonon oscillation resulted in piezoelectric field modulation and then caused absorption variation through the quantum confined Franz-Keldysh effect. The wave vector uncertainty due to the finite sample width was found to determine the observed dephasing time.  相似文献   

18.
We reconstruct a test wave function in a strongly coupled, graded well-width superlattice by resolving the spatial extension of the interband polarisation and deducing the wave function employing non-linear optical spectroscopy. The graded gap superlattice allows us to precisely control the distance between test and probe wave functions. By spatially tuning one wave function with respect to the other and recording the amplitude and the sign of the modulation of the spectrally resolved four-wave-mixing (FWM) signal with respect to delay, we are able to reconstruct the test wave function. Our numerical simulation of the third-order response of an inhomogeneously broadened system reproduces the experimental data in great detail. The wave function used for the modelling is computed by a one-dimensional transfer matrix model including electron–hole Coulomb interaction. Our experimental scheme inherently allows us to quantitatively distinguish between non-linear mechanisms leading to the FWM signal, namely phase-space filling and excitation-induced dephasing. PACS 78.47.+p; 71.35.Cc; 42.50.Md; 42.65.Re  相似文献   

19.
20.
It is shown that, at zero temperature, a hole placed in a homogeneous synthetic nucleotide chain with applied electric field demonstrates Bloch oscillations. The oscillations of the hole placed initially on one of the base pairs arise in response to disruption of the initial charge distribution caused by nucleotide vibrations. The finite temperature fluctuations result in degradation of coherent oscillations. The maximum permissible temperature for DNA “Bloch oscillator” occurrence is estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号