首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Du J  Fu L  Liu Z  Han B  Li Z  Liu Y  Sun Z  Zhu D 《The journal of physical chemistry. B》2005,109(26):12772-12776
A simple method to decorate the multiwalled carbon nanotubes (MWCNTs) with ZnS nanospheres has been developed. The method involves ultrasonic pretreatment and heat treatments of MWCNTs, zinc chloride, and thiourea in ethanol. The heterostructures have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Comparative experiments show that both ultrasonic treatment and heat treatment are necessary for synthesizing the MWCNTs/ZnS heterostructures. Moreover, a photoluminescence spectrum shows that the MWCNTs/ZnS heterostructures feature a broad blue emission at about 430 nm, indicating that there exists significant ground-state interaction between ZnS nanospheres and MWCNTs. Meanwhile, the current-voltage characteristic of the MWCNTs/ZnS exhibits clear rectifying behavior, revealing charge transfer between MWCNTs and ZnS nanospheres.  相似文献   

2.
ZnS nanoparticles of diameters of 3–4 nm were self-assembled to form dense nanospheres of sizes 100 nm by a colloidal precipitation method using PVP as the stabilizing agent. Studies indicated that the ZnS nanoparticles maintained their individual properties inside the nanospheres. Optical absorption spectra of the samples demonstrated the effect of quantum confinement in the ZnS nanocrystals. Room temperature photoluminescence measurements showed a sharp UV emission at 370 nm, attributed to sulfur vacancies.  相似文献   

3.
Small and monodisperse ZnS hollow nanospheres with outer diameter ranging from 60 to 70 nm and wall thickness of 15-20 nm were fabricated in a large scale by a simple surfactant polyethylene glycol (PEG) assisted method. The diameter and the wall thickness of the hollow nanospheres could be controlled by manipulating the amount of PEG and the aging time, respectively. Moreover, the wall of these hollow nanospheres is very compact. The product was characterized by X-ray power diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectrum and fluorescence spectroscopy. The photocatalytic activity of as-prepared ZnS hollow nanospheres was also evaluated by using methyl orange (MO) as a model organic compound and the result revealed that their photocatalytic activity is a little lower than that of Degussa P25 TiO(2) but better than that of ZnS nanocrystals prepared by literature method. Furthermore, a rational mechanism to the formation and evolution of the products is proposed.  相似文献   

4.
程丽娅  陈云  吴庆生 《化学学报》2007,65(17):1851-1854
利用平平加作为表面活性剂, 正戊醇作为助表面活性剂, 环己烷作为油相, 以硫化钠(Na2S)和醋酸锌(Zn(Ac)2)作为反应物, 通过控制反应条件在反相胶束体系中合成出单分散的ZnS纳米球与纳米梭. 采用XRD和TEM对产物的结构和形貌进行表征, 结果表明产物均为六方相ZnS, 晶胞参数为a=0.3823 nm, c=56.2 nm, 纳米球直径约为50 nm, 纳米梭直径约为60 nm, 长度约为110 nm. 采用UV-Vis(紫外可见吸收光谱)和PL(荧光光谱)研究了产物的光学性能. 纳米球的紫外可见光谱的吸收峰出现在288 nm处, 而纳米梭在305 nm处有强吸收峰, 与块体材料相比, 分别有约60和50 nm的蓝移. 当激发波长为270 nm时, 纳米球和纳米梭产物分别能够发出波长为408和303 nm的紫外光.  相似文献   

5.
Uniform and well-dispersed Zn S nanospheres have been successfully synthesized via a facile chemical route. The crystal structure, morphology, surface area and photocatalytic properties of the sample were characterized by powder X-ray diffraction(XRD), scanning electron microscopy(SEM), Brunauer-Emmett-Teller(BET) and ultraviolet-visible(UV-vis) spectrum. The results of characterizations indicate that the products are identified as mesoporous zinc-blende ZnS nanospheres with an average diameter of 200 nm, which are comprised of nanoparticles with the crystallite size of about 3.2 nm calculated by XRD. Very importantly, photocatalytic degradation of methylene blue(MB) shows that the as-prepared Zn S nanospheres exhibit excellent photocatalytic activity with nearly 100% of MB decomposed after UV-light irradiation for 25 min. The excellent photocatalytic activity of ZnS nanospheres can be ascribed to the large specific surface area and hierarchical mesoporous structure.  相似文献   

6.
丁筛霞  张卫新  许俊 《无机化学学报》2007,23(11):2003-2006
Cubic ZnS hollow nanospheres have been prepared by a simple and template-free solvothermal method. The reaction was accomplished between Zn powder and the in-situ prepared S8. The results of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) show that the ZnS hollow spheres are composed of ultrafine nanoparticles. The average diameters of the hollow nanospheres are about 100 nm. Their photoluminescence (PL) spectra indicate that they have excellent optical properties.  相似文献   

7.
A convenient chemical conversion method that allows the direct preparation of nanocrystalline ZnE (E = O, S, Se) semiconductor spheres and hollow spheres as well as their core/shell structures is reported. By using monodisperse ZnO nanospheres as a starting reactant and in situ template, ZnS, ZnSe solid and hollow nanospheres, and ZnO/ZnS and ZnO/ZnSe core/shell nanostructures have been obtained through an ultrasound-assisted solution-phase conversion process. The formation mechanism of these nanocrystals is connected with the sonochemical effect of ultrasound irradiation. The photoluminescence and electrogenerated chemiluminescence properties of the as-prepared nanocrystals were investigated.  相似文献   

8.
ZnS hollow nanospheres with holes were prepared by reacting ZnSO4 with H2S, the sulfide source formed in the reaction of CS2 with ethylenediamine, 1,3-propylenediamine, butylamine or 2-(2-aminoethylamino) ethanol, which also acted as a template agent, at 50°C under agitation. The shape, particle size of about 100–850 nm and hole size of about 150–600 nm of ZnS hollow nanospheres with holes were shown by SEM and TEM images. These ZnS nanospheres with β cubic ZnS phase and composed of 2–5 nm nanocrystals were characterized by XRD and HRTEM. The blue shift of maximum absorption in UV-vis displayed the effect of quantum size. The two amino groups of amine templates reacted favorably with Zn2+ to form uniform and relatively smooth ZnS nanospheres with holes, while hydroxyethyl played a disadvantageous role. A reasonable mechanism of hole formation by H2S rushing out is suggested. __________ Translated from Journal of Jinan University (Natural Science), 2007, 28(1): 92–95 [译自: 暨南大学学报(自然科学版)]  相似文献   

9.
Qi Gang  Liu Wei  Bei Zhining 《中国化学》2011,29(1):131-134
An efficient route for the synthesis of 5‐substituted 1H‐tetrazole via [2+3] cycloaddition of nitriles and sodium azide is reported using Fe3O4/ZnS hollow nanospheres as a magnetic separable heterogeneous catalyst. The catalyst is very efficient, affording excellent yields and can be reused for several circles. In addition, the Fe3O4 inner shell exhibits magnetism, making the catalyst easily separated by a magnet.  相似文献   

10.

The reverse microemulsion containing cationic gemini surfactant trimethylene‐1,3‐bis(dodecyldimethyl ammonium bromide) (12‐3‐12, 2Br?) is applied to synthesize ZnS nanospheres. Narrow size distributed ZnS nanospheres with controllable size and uniform morphology are successfully fabricated by direct reaction of ZnCl2 and Na2S in the reverse microemulsion systems. Except for the appearance of large aggregates owing to quantum size effects when the incubation time is 2 h, with increasing the incubation time from 12 to 48 h, the diameter of the ZnS nanosphere can be controlled as 20–25 nm and 140 nm, respectively. X‐ray diffraction (XRD), transmission electron microscopy (TEM), and UV‐visible absorption spectroscopy are applied to characterize the resulting ZnS nanoparticles. In the system used in the present study uniform nanosphere morphology can be synthesized, with the incubation time as an important factor in controlling the size of as‐prepared products.  相似文献   

11.
ZnS hollow nanospheres with nanoporous shell were successfully synthesized through the evolvement of ZnO nanospheres which were synthesized by hydrothermal method with poly (sodium-p-styrene sulfonate) (PSS) as surfactant at low temperature. The as-synthesized samples were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), UV/vis spectrum and N2 adsorption. The results showed that the shell of as-synthesized ZnS hollow structure was composed of many fine crystallites and had a nanoporous structure with pore diameter about 4 nm demonstrated by N2 adsorption/desorption isotherm. The sample possessed efficiency of photocatalytic degradation on X-containing (X=Cl, Br, I) organic pollutants.  相似文献   

12.
仿生支撑液膜法制备硫化锌自组装纳米球链   总被引:4,自引:0,他引:4  
孙冬梅  吴庆生  朱勇  丁亚平 《化学学报》2005,63(16):1479-1482
采用了一种全新的化学仿生方法——载体支撑液膜法制备ZnS纳米球链. 常温常压条件下, 利用含邻菲罗啉载体的支撑液膜(SLM)反应体系选择性传输Zn2+至膜另一侧, 在SLM模板作用下, 控制结晶位点, 定向结合阴离子, 加上局部过饱和及界面成核的影响, 成功制备出由8~30 nm纳米粒子自组装的直径范围为250~300 nm ZnS球链. 由XRD和TEM的结果显示, 其结构为立方闪锌矿, 晶格常数为α=0.5390 nm. 本文还对其荧光性质及产物形成机理进行了初步探讨.  相似文献   

13.
Silica-coated ZnS:Mn nanoparticles were synthesized by coating hydrophobic ZnS:Mn nanoparticles with silica shell through microemulsion. The core–shell structural nanoparticles were confirmed by X-ray diffraction (XRD) patterns, high-resolution transmission electron microscope (HRTEM) images and energy dispersive spectroscopy (EDS) measurements. Results show that each core–shell nanoparticle contains single ZnS:Mn nanoparticle within monodisperse silica nanospheres (40 nm). Photoluminescence (PL) spectroscopy and UV–vis spectrum were used to investigate the optical properties of the nanoparticles. Compared to uncoated ZnS:Mn nanoparticles, the silica-coated ZnS:Mn nanoparticles have the improved PL intensity as well as good photostability. The obtained silica-coated ZnS:Mn nanoparticles are water-soluble and have fluorescence sensitivity to Cu2+ ions. Quenching of fluorescence intensity of the silica-coated nanoparticles allows the detection of Cu2+ concentrations as low as 7.3 × 10−9 mol L−1, thus affording a very sensitive detection system for this chemical species. The possible quenching mechanism is discussed.  相似文献   

14.
Gu F  Li C  Wang S 《Inorganic chemistry》2007,46(13):5343-5348
A facile solution-chemical method has been developed to be capable of encapsulating a multiwalled carbon nanotube (MWCNT) with ZnS nanocrystals without using any bridging species. The thickness of the ZnS shell can be tuned easily by controlling the experimental conditions. The optical properties of the MWCNT/ZnS heterostructures were investigated using UV-vis absorption and photoluminescence spectroscopy. The optical absorption spectrum indicates that the band gap of ZnS nanocrystallites is 4.2 eV. On the basis of the photoluminescence spectrum, charge transfer is thought to proceed from ZnS nanocrystals to the nanotube in the ZnS-carbon nanotube system. These special heterostructures are very easily encapsulated within a uniform silica layer by a modified-St?ber process and still show better stability even after heat treatment at 400 degrees C, which makes them appealing for practical applications in biochemistry and biodiagnostics.  相似文献   

15.
A novel method for the production of homogeneous samples of hollow carbon nanospheres is reported from cellulose, an inexpensive and renewable precursor. The nanospheres are of diameter 50 nm, graphitic wall thickness 5-10 nm, and can easily be produced in several hundred milligram batches. The nanospheres are derived from the laser pyrolysis of a nickel chloride templated cellulose char via open Ni-core shells.  相似文献   

16.
中空SiO_2纳米微球的制备与表征   总被引:1,自引:1,他引:0  
在乙醇/氨水介质中,将SiO2包覆在聚乙烯吡咯烷酮(PVP)功能化的聚苯乙烯(PS)微粒表面,利用一步法得到了中空纳米二氧化硅微球;研究了影响中空纳米二氧化硅微球形成的主要因素,并探讨了中空纳米SiO2微球的可能形成机理.结果表明,在一定的反应时间下,当氨水用量为0.6 mL、温度为70℃时,可以获得空心结构的SiO2纳米微球;通过控制四乙基原硅酸盐(TEOS)的量可以调节微球的包覆层厚度.  相似文献   

17.
阎虎生 《高分子科学》2013,31(2):294-301
Single-hole hollow polymer nanospheres were fabricated by raspberry-like template method using "graft-from" strategy through atom transfer radical polymerization (ATRP). Nanometer-sized silica spheres were covalently attached onto the surfaces of micrometer-sized silica spheres. Crosslinked polymer shells on the nano-sized spheres outside the attached area were formed by "graft-from" strategy through ATRP. After removal of the silica cores, single-hole hollow crosslinked polymer nanospheres were obtained. In this strategy, most of ATRP monomers may be used and thus many functional groups can be easily incorporated into the single-hole hollow crosslinked polymer nanospheres.  相似文献   

18.
Chen X  Xu H  Xu N  Zhao F  Lin W  Lin G  Fu Y  Huang Z  Wang H  Wu M 《Inorganic chemistry》2003,42(9):3100-3106
The high-temperature (over 1020 degrees C) polymorph of ZnS, wurtzite ZnS, has been successfully prepared through a low-temperature (180 degrees C) hydrothermal synthesis route in the presence of ethylenediamine (en). The effects of en concentrations, reactant concentrations, reaction temperatures, and reaction times on crystal structures and shapes of ZnS have been investigated. We have demonstrated that the wurtzite ZnS showing rodlike morphology can be kinetically stabilized in the presence of en, especially at a high reactant concentration under appropriate hydrothermal conditions. Besides phase evolution of ZnS from hexagonal to cubic, morphological transformation from nanorods to nanograins has also been observed in the present investigation. Nanograins of phase-pure cubic ZnS, the thermodynamically stable polymorph, are easily prepared, and no hexagonal ZnS nanorods are detected in "pure" water, i.e., in the absence of en molecules. The above investigations indicate that the controlled fabrication of wurtzite ZnS nanorods is due to a mediated generation of the lamellar phase, ZnS.0.5en, a covalent organic-inorganic network based on ZnS slabs, and to its subsequent thermolysis in aqueous solution. The controlled growth of wurtzite ZnS nanorods and sphalerite ZnS nanograins provides us an opportunity to structurally modulate physical properties. These wurtzite ZnS nanorods display narrower and stronger blue emission than sphalerite ZnS nanograins.  相似文献   

19.
A facile route to synthesize amorphous TiO2 nanospheres by a controlled oxidation and hydrolysis process without any structure‐directing agents or templates is presented. The size of the amorphous TiO2 nanospheres can be easily turned from 20 to 1500 nm by adjusting either the Ti species or ethanol content in the reaction solution. The phase structure of nanospheres can be controlled by hydrothermal treatment. The TiO2 nanospheres show excellent size‐dependent light‐scattering effects and can be structured into a light‐harvesting layer for dye‐sensitized solar cells with a quite high power conversion efficiency of 9.25 %.  相似文献   

20.
Chitosan-gold hybrid nanospheres were prepared through a direct facile approach that utilized cross-linked composite nanospheres consisting of low-molecular-weight chitosan (LWCS) and ethylenediaminetetraacetic acid (EDTA) as a precursor reaction system. EDTA was employed not only to construct the counterion interaction-based composite nanospheres with the cationic chitosan but also as the reductant for subsequent in situ gold salt reduction within the LWCS-EDTA composite nanospheres. This approach elegantly ensured that each and every nanosphere was loaded with gold nanoparticles and no nonembedded free gold nanoparticles would exist in the dispersing medium. Moreover, becauseof the noncovalent interaction between LWCS and EDTA, the EDTA reductant can be easily removed from the cross-linked nanospheres, and "pure" chitosan-gold hybrid nanospheres can be obtained. The obtained chitosan-gold hybrid nanospheres were found to have a tunable size and good dispersing stability within a wide pH range. The embedded gold nanoparticles were in the range from several to several tens of nanometers, which may be useful for sensing and imaging. Morphology studies indicated that most of the loaded gold nanoparticles were located in the interior of the hybrid nanospheres. Taking into account the good biocompatibilities of LWCS, abundant functional (amino) groups in chitosan, and the mild preparation conditions, we find that the chitosan-gold hybrid nanospheres prepared here may have tremendous potential in advanced biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号