首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the subspace with better smoothness. Furthermore, the upper bound of approximation error is given.  相似文献   

2.
Motivated by the need of processing non-point-evaluation functional data, we introduce the notion of functional reproducing kernel Hilbert spaces (FRKHSs). This space admits a unique functional reproducing kernel which reproduces a family of continuous linear functionals on the space. The theory of FRKHSs and the associated functional reproducing kernels are established. A special class of FRKHSs, which we call the perfect FRKHSs, are studied, which reproduce the family of the standard point-evaluation functionals and at the same time another different family of continuous linear (non-point-evaluation) functionals. The perfect FRKHSs are characterized in terms of features, especially for those with respect to integral functionals. In particular, several specific examples of the perfect FRKHSs are presented. We apply the theory of FRKHSs to sampling and regularized learning, where non-point-evaluation functional data are used. Specifically, a general complete reconstruction formula from linear functional values is established in the framework of FRKHSs. The average sampling and the reconstruction of vector-valued functions are considered in specific FRKHSs. We also investigate in the FRKHS setting the regularized learning schemes, which learn a target element from non-point-evaluation functional data. The desired representer theorems of the learning problems are established to demonstrate the key roles played by the FRKHSs and the functional reproducing kernels in machine learning from non-point-evaluation functional data. We finally illustrate that the continuity of linear functionals, used to obtain the non-point-evaluation functional data, on an FRKHS is necessary for the stability of the numerical reconstruction algorithm using the data.  相似文献   

3.

A theorem of M. F. Driscoll says that, under certain restrictions, the probability that a given Gaussian process has its sample paths almost surely in a given reproducing kernel Hilbert space (RKHS) is either or . Driscoll also found a necessary and sufficient condition for that probability to be .

Doing away with Driscoll's restrictions, R. Fortet generalized his condition and named it nuclear dominance. He stated a theorem claiming nuclear dominance to be necessary and sufficient for the existence of a process (not necessarily Gaussian) having its sample paths in a given RKHS. This theorem - specifically the necessity of the condition - turns out to be incorrect, as we will show via counterexamples. On the other hand, a weaker sufficient condition is available.

Using Fortet's tools along with some new ones, we correct Fortet's theorem and then find the generalization of Driscoll's result. The key idea is that of a random element in a RKHS whose values are sample paths of a stochastic process. As in Fortet's work, we make almost no assumptions about the reproducing kernels we use, and we demonstrate the extent to which one may dispense with the Gaussian assumption.

  相似文献   


4.
考虑了再生核希尔伯特空间连续线性泛函范数的表示,得到了用其范数平方等于该线性泛函连续两次作于再生核的简明表示.对于常见的Sobolev-Hibert空间而言,其再生核则可用截幂函数来表示,从而得到Sobolev-Hibert空间上连续线性泛函范数的简洁表示,以新视角解释和简化了文献中的现有结果.  相似文献   

5.
We describe how to use Schoenberg’s theorem for a radial kernel combined with existing bounds on the approximation error functions for Gaussian kernels to obtain a bound on the approximation error function for the radial kernel. The result is applied to the exponential kernel and Student’s kernel. To establish these results we develop a general theory regarding mixtures of kernels. We analyze the reproducing kernel Hilbert space (RKHS) of the mixture in terms of the RKHS’s of the mixture components and prove a type of Jensen inequality between the approximation error function for the mixture and the approximation error functions of the mixture components.  相似文献   

6.
We construct a simple reproducing kernel space whose multiplier algebra does not satisfy a ``corona theorem'.

  相似文献   


7.
Let f, g be entire functions. If there exist M1,M2>0 such that |f(z)|?M1|g(z)| whenever |z|>M2 we say that f?g. Let X be a reproducing Hilbert space with an orthogonal basis . We say that X is an ordered reproducing Hilbert space (or X is ordered) if f?g and gX imply fX. In this note, we show that if then X is ordered; if then X is not ordered. In the case , there are examples to show that X can be of order or opposite.  相似文献   

8.
9.
10.
We introduce new reproducing kernel Hilbert spaces on a semi-infinite domain and demonstrate existence and uniqueness of solutions to the nonhomogeneous telegraph equation in these spaces if the driver is square-integrable and sufficiently smooth.  相似文献   

11.
This paper presents a new reproducing kernel Hilbert space method for solving nonlinear fourth-order boundary value problems. It is a relatively new analytical technique. The solution obtained by using the method takes the form of a convergent series with easily computable components. This paper will present a numerical comparison between our method and other methods for solving an open fourth-order boundary value problem presented by Scott and Watts. The method is also applied to a nonlinear fourth-order boundary value problem. The numerical results demonstrate that the new method is quite accurate and efficient for fourth-order boundary value problems.  相似文献   

12.
13.
Optimal numerical approximation of bounded linear functionals by weighted sums in Hilbert spaces of functions analytic in a circleK r , in a circular annulusK r1,r2 and in an ellipseE r is investigated by Davis' method on the common algebraic background for diagonalising the normal equation matrix. The weights and error functional norms for optimal rules with nodes located angle-equidistant on the concentric circleK s or on the confocal ellipseE s and in the interval [–1,1] for an arbitrary bounded linear functional are given explicitly. They are expressed in terms of a complete orthonormal system in the Hilbert space.  相似文献   

14.
15.
We investigate reproducing kernel Hilbert spaces (RKHS) where two functions are orthogonal whenever they have disjoint support. Necessary and sufficient conditions in terms of feature maps for the reproducing kernel are established. We also present concrete examples of finite dimensional RKHS and RKHS with a translation invariant reproducing kernel. In particular, it is shown that a Sobolev space has the orthogonality from disjoint support property if and only if it is of integer index.  相似文献   

16.
We describe unconditional bases of the form {k(z n ):λ n ∈Λ}, Λ∩?=? in de Branges spaces, where k is the reproducing kernel.  相似文献   

17.
Solving partial differential equations (PDE) with strong form collocation and nonlocal approximation functions such as orthogonal polynomials, trigonometric functions, and radial basis functions exhibits exponential convergence rates; however, it yields a full matrix and suffers from ill conditioning. In this work, we discuss a reproducing kernel collocation method, where the reproducing kernel (RK) shape functions with compact support are used as approximation functions. This approach offers algebraic convergence rate, but the method is stable like the finite element method. We provide mathematical results consisting of the optimal error estimation, upper bound of condition number, and the desirable relationship between the number of nodal points and the number of collocation points. We show that using RK shape function for collocation of strong form, the degree of polynomial basis functions has to be larger than one for convergence, which is different from the condition for weak formulation. Numerical results are also presented to validate the theoretical analysis. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 554–580, 2011  相似文献   

18.
This paper proposes a method to estimate the conditional quantile function using an epsilon-insensitive loss in a reproducing kernel Hilbert space. When choosing a smoothing parameter in nonparametric frameworks, it is necessary to evaluate the complexity of the model. In this regard, we provide a simple formula for computing an effective number of parameters when implementing an epsilon-insensitive loss. We also investigate the effects of the epsilon-insensitive loss.  相似文献   

19.
Motivated by applications to machine learning, we construct a reversible and irreducible Markov chain whose state space is a certain collection of measurable sets of a chosen l.c.h. space X. We study the resulting network (connected undirected graph), including transience, Royden and Riesz decompositions, and kernel factorization. We describe a construction for Hilbert spaces of signed measures which comes equipped with a new notion of reproducing kernels and there is a unique solution to a regularized optimization problem involving the approximation of L2 functions by functions of finite energy. The latter has applications to machine learning (for Markov random fields, for example).  相似文献   

20.
In this paper, we present algorithms of preorthogonal adaptive Fourier decomposition (POAFD) in weighted Bergman spaces. POAFD, as has been studied, gives rise to sparse approximations as linear combinations of the corresponding reproducing kernels. It is found that POAFD is unavailable in some weighted Hardy spaces that do not enjoy the boundary vanishing condition; as a result, the maximal selections of the parameters are not guaranteed. We overcome this difficulty with two strategies. One is to utilize the shift operator while the other is to perform weak POAFD. In the cases when the reproducing kernels are rational functions, POAFD provides rational approximations. This approximation method may be used to 1D signal processing. It is, in particular, effective to some Hardy Hp space functions for p not being equal to 2. Weighted Bergman spaces approximation may be used in system identification of discrete time‐varying systems. The promising effectiveness of the POAFD method in weighted Bergman spaces is confirmed by a set of experiments. A sequence of functions as models of the weighted Hardy spaces, being a wider class than the weighted Bergman spaces, are given, of which some are used to illustrate the algorithm and to evaluate its effectiveness over other Fourier type methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号