首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
研究了尿素-氯化胆碱低共熔溶剂DES的制备方法.通过监控制备过程中折光率、电导率和密度等性质指标的变化,考察了尿素-氯化胆碱DES合成规律及影响因素.采用红外光谱表征了所合成DES的分子结构.使用AMS软件中COSMO-RS模块对DES其中的尿素和氯化胆碱分子中的表面电荷密度分布进行了模拟,剖析了氢键作用机制.比较了干...  相似文献   

2.
通过氯化胆碱和草酸在100℃下搅拌,合成了氯化胆碱/草酸型低共熔溶剂。以氯化胆碱/草酸为催化剂、过氧化氢为氧化剂、咪唑氟硼酸盐离子液体为萃取剂氧化萃取一体法脱除模拟油中的二苯并噻吩(DBT)。考察了反应温度、反应时间、氧化剂加入量、萃取剂类型、硫化物类型等因素对脱硫效率的影响。结果表明,当以咪唑氟硼酸盐为萃取剂,n(H2O2)/n(S)=8、反应温度30℃、反应80 min时,二苯并噻吩的脱除率可以达到95%。催化剂重复使用5次后,脱硫率仍然保持在90%。  相似文献   

3.
氯化胆碱离子液体中纳米银的电化学制备与表征   总被引:1,自引:1,他引:0  
在氯化胆碱离子液体中,采用牺牲阳极法直接从金属银制备了纳米银微粒;利用X射线衍射仪、透射电子显微镜、傅立叶红外光谱和热分析仪对样品进行了分析表征.结果表明:所制备的银纳米微粒大致呈球形,具有面心立方结构,粒径约为60nm.作为溶剂的离子液体同时具有分散剂和稳定剂的功能,可防止银纳米微粒之间的团聚及表面氧化.  相似文献   

4.
作为一种新型的离子液体,胆碱类低共熔溶剂具有相比于其他离子液体更为突出的特点,如低毒、生物可降解、价格低廉等,这些特点使得此类离子液体在绿色化学和工程化学中受到越来越多的关注。本文分析了胆碱类低共熔溶剂的凝固点、熔点、溶解度、黏度、表面张力、电导率等物性随温度、组成、水分等因素的变化及理论预测模型,并介绍了胆碱类低共熔溶剂在润滑、功能材料制备、电化学、有机合成及生物质催化转化等方面的潜在应用。最后就胆碱类低共熔溶剂研究及应用中存在的问题及难点对其前景做出展望。  相似文献   

5.
采用恒电流和恒电位方法,基于含有氯化铜溶液的乙二醇-氯化胆碱或硫脲-氯化胆碱离子液体,室温下在钢阴极上进行了铜的电沉积. 利用扫描电子显微镜和X-射线衍射技术研究了各种实验条件对电沉积的影响以及沉积层的形貌. 结果表明,室温下施加不超过-0.45 V的沉积电位和不超过-4.0 A·m-2的沉积电流密度,可以同时从氯化胆碱基乙二醇和硫脲离子液体中沉积得到非常光滑、有光泽、致密且具有良好结合力、色泽鲜艳的铜金属涂层. 铜的电沉积阴极电流效率约为97%.  相似文献   

6.
CO2/离子液体体系热力学性质的分子动力学模拟   总被引:1,自引:0,他引:1  
超临界CO2和离子液体(ILs)是两种绿色溶剂. 离子液体可以溶解超临界CO2, 而超临界CO2不能溶解离子液体. 由此设计构成的CO2/IL二元系统, 同时具备了超临界CO2和离子液体的许多优点: 既可以降低离子液体的粘度, 还便于相分离, 是新型的耦合绿色溶剂. 其物理化学性质对于设计反应、分离等过程非常重要. 因此, 本文以CO2/IL二元系统为研究对象, 通过选择合适的分子力场和系综, 运用分子动力学(MD)模拟方法研究了CO2/[bmim][PF6]、CO2/[bmim][NO3]等体系的热力学性质. 结果表明, CO2对ILs膨胀度的影响非常小, 当CO2摩尔分数为0.5时, ILs膨胀仅为15%. CO2/ILs的扩散系数远小于CO2膨胀甲醇、乙醇溶液的扩散系数. 随着CO2含量的增加, ILs的扩散系数提高, 粘度显著下降, 表明CO2能有效地改善ILs扩散性, 减小其粘度. 因此CO2可用以改善离子液体溶剂体系的传递特性, 增强反应分离过程在其中的进行.  相似文献   

7.
离子色谱法测定饲料中氯化胆碱和三甲胺的含量   总被引:12,自引:0,他引:12  
丁永胜  牟世芬 《色谱》2004,22(2):174-176
建立了离子色谱法测定饲料中氯化胆碱含量及鉴别饲料中氯化胆碱及掺假物三甲胺的方法。选用IonPac CS12阳离子交换色谱柱(250 mm×4 mm i.d.)和8.5 mmol/L H2SO4淋洗液,抑制型电导检测,在16 min内分离测定了包括胆碱和三甲胺在内的8种阳离子。胆碱和三甲胺的最小检出限分别为0.1 mg/L和0.05 mg/L。方法回收率为99.25%~102.5%。该方法具有灵敏度高、选择性强、操作简单等优点。  相似文献   

8.
研究了尿素-氯化胆碱DES中由均苯四甲酸二酐制取均苯四甲酸二酰亚胺工艺,考察了反应时间、反应温度及DES与均苯四甲酸二酐PMDA比例对产物收率的影响,通过响应面实验和Design-Expert中岭回归分析对反应条件进行了优化,得出最佳反应温度为130℃、反应时间4 h、DES与均苯四甲酸二酐质量比8.1:1,最终产物收率可达93.0%。采用红外光谱、紫外-可见光光谱仪、熔点仪、XRD对合成产物进行了表征,证明产品为均苯四甲酸二酰亚胺。基于尿素-氯化胆碱低共熔溶剂分解动力学,提出了简单的反应机理。尿素-氯化胆碱DES可起到溶剂、原料兼催化剂三重作用,且可重复使用,实现了均苯四甲酸二酰亚胺的绿色合成。  相似文献   

9.
氯化胆碱离子液体中纳米铜的电化学制备   总被引:1,自引:0,他引:1  
在氯化胆碱离子液体中,采用牺牲阳极法于80℃下直接从金属铜制备了纳米铜微粒,其结构和性能经IR,XRD,SEM,TEM和TG表征。结果表明:纳米微粒大致呈球形,面心立方结构,粒径约30 nm。  相似文献   

10.
韩铖乐  曹明敏  杨芳  陈玉焕 《化学通报》2023,86(8):929-936,928
乙烯,作为石油化工行业的龙头原料,其高效回收分离具有重要的战略意义。离子液体作为一种结构可调控的新型绿色溶剂,在乙烯的回收分离中展现出巨大的应用前景。本文总结了近年来离子液体在乙烯/乙烷和乙烯/乙炔分离方面的研究进展,从溶剂吸收、膜吸收和与多孔材料相结合的吸附分离法等角度展开,系统地阐述了常规离子液体、功能化离子液体、聚离子液体等纯组分体系及多组分体系在不同分离方法中的研究现状,展望了离子液体在乙烯回收分离方面的应用前景和发展趋势。  相似文献   

11.
Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically driven reactions because they exhibit high conductivity and excellent electrochemical stability. However, no systematic investigations on the electrochemical potential windows (EPWs), which could be used to characterize the electrochemical stability, have been reported. In this regard, the EPWs of 33 ILs and 23 DESs have been studied utilizing cyclic voltammetry (CV) method and the effects of structural factors (cations and anions of ILs, and HBDs and HBAs of DESs) and external factors (electrode, water content) on the EPWs have been comprehensively investigated. The electrochemical stability of selected ILs comprising five traditional cations, namely imidazolium, pyridinium, pyrrolidinium, piperidinium and ammonium and 13 kinds of versatile anions was studied. The results show that for ILs, both cation and anion play an important role on the reductive and oxidative potential limit. For a same IL at different working electrode, for example, glassy carbon (GC), gold (Au) and platinum (Pt) electrode, the largest potential window is almost observed on the GC working electrode. The investigations on the EPWs of choline chloride (ChCl), choline bromide (ChBr), choline iodide (ChI), and methyl urea based DESs show that the DES composed of ChCl and methyl urea has the largest potential window. This work may aid the selection of ILs or DESs for use as a direct electrolyte or a solvent in electrochemical applications.  相似文献   

12.
Deep Eutectic Solvents (DESs) are a novel class of solvents with potential industrial applications in separation processes, chemical reactions, metal recovery and metal finishing processes such as electrodeposition and electropolishing. Macroscopic physical properties such as viscosity, conductivity, eutectic composition and surface tension are already available for several DESs, but the microscopic transport properties for this class of compounds are not well understood and the literature lacks experimental data that could give a better insight into the understanding of such properties. This paper presents the first pulsed field gradient nuclear magnetic resonance (PFG-NMR) study of DESs. Several choline chloride based DESs were chosen as experimental samples, each of them with a different associated hydrogen bond donor. The molecular equilibrium self-diffusion coefficient of both the choline cation and hydrogen bond donor was probed using a standard stimulated echo PFG-NMR pulse sequence. It is shown that the increasing temperature leads to a weaker interaction between the choline cation and the correspondent hydrogen bond donor. The self-diffusion coefficients of the samples obey an Arrhenius law temperature-dependence, with values of self-diffusivity in the range of [10(-10)-10(-13) m(2) s(-1)]. In addition, the results also highlight that the molecular structure of the hydrogen bond donor can greatly affect the mobility of the whole system. While for ethaline, glyceline and reline the choline cation diffuses slower than the associated hydrogen bond donor, reflecting the trend of molecular size and molecular weight, the opposite behaviour is observed for maline, in which the hydrogen bond donor, i.e. malonic acid, diffuses slower than the choline cation, with self-diffusion coefficients values of the order of 10(-13) m(2) s(-1) at room temperature, which are remarkably low values for a liquid. This is believed to be due to the formation of extensive dimer chains between malonic acid molecules, which restricts the mobility of the whole system at low temperature (<30 °C), with malonic acid and choline chloride having almost identical diffusivity values. Diffusion and viscosity data were combined together to gain insights into the diffusion mechanism, which was found to be the same as for ionic liquids with discrete anions.  相似文献   

13.
Magnesium is very reactive and therefore magnesium electroplating in aqueous solutions is hazardous. Mg is classified as a water sensitive substrate from the electrodeposition point of view. Therefore, it was suggested that ionic liquids be used as electrolytic solvents for electrodeposition onto Mg and its alloys. Five air and water stable ionic liquids based on choline chloride (ChCl) were investigated to deposit Zn onto several Mg alloys in air. The ChCl/urea mixture was found to be the most feasible liquid for successful electrodeposition. Other liquids produced powdery deposits or resulted in corrosion of Mg substrate. Application of a pulsed current was superior to a constant current in producing smooth, sealed and more corrosion-resistant Zn layers.  相似文献   

14.
Oily sludge produced in the process of petroleum exploitation and utilization is a kind of hazardous waste that needs to be urgently dealt with in the petrochemical industry. The oil content of oily sludge is generally between 15–50% and has a great potential for oil resource utilization. However, its composition is complex, in which asphaltene is of high viscosity and difficult to separate. In this study, The oily sludge was extracted with toluene as solvent, supplemented by three kinds of ionic liquids (1-ethyl-3-methylimidazole tetrafluoroborate ([EMIM] [BF4]), 1-ethyl-3-methylimidazole trifluoro-acetate ([EMIM] [TA]), 1-ethyl-3-methylimidazole Dicyandiamide ([EMIM] [N(CN)2])) and three kinds of deep eutectic solutions (choline chloride/urea (ChCl/U), choline chloride / ethylene glycol (ChCl/EG), and choline chloride/malonic acid (ChCl/MA)). This experiment investigates the effect of physicochemical properties of the solvents on oil recovery and three machine learning methods (ridge regression, multilayer perceptron, and support vector regression) are used to predict the association between them. Depending on the linear correlation of variables, it is found that the conductivity of ionic liquid is the key characteristic affecting the extraction treatment in this system.  相似文献   

15.
近年来,低共熔溶剂(DESs)引起了人们的广泛关注,在诸多领域得到应用。DESs一般由氢键供体(HBDs)和氢键受体(HBAs)通过氢键作用形成,其热稳定性研究对于其高温应用具有重要意义。本文利用热重分析法(TG)对40种DESs的热稳定性进行了系统研究,并得到了所研究DESs的开始分解温度(Tonset)。值得注意的是,DESs受热后的变化情况与离子液体不同,呈现出分阶段失重的现象。通常形成DESs的氢键在升温后首先被破坏,从而导致DESs分解成组成其的HBDs和HBAs。然后热稳定性较差(或者沸点较低)的HBDs首先分解(或挥发),而HBAs则在更高温度下分解(或挥发)。例如常见的HBA氯化胆碱(ChCl)在250 ℃附近开始分解。氢键强度对DESs受热后的表现起着重要的作用,DESs中的氢键会阻碍分子“逃脱”,使得Tonset向高温方向移动。此外,我们考察了阴离子、氢键供体、摩尔比对DESs热稳定性的影响,发现HBDs自身的挥发或分解对DESs的热稳定性起着决定性作用。由于用Tonset值会高估DESs的热稳定性,长期热稳定性的考察对其工业应用具有重要价值。本研究能帮助人们理解DESs的热分解行为,为制备具有适当热稳定性的DESs提供依据。  相似文献   

16.
A deep-eutectic solvent with the properties of an ionic liquid is formed when choline chloride is mixed with copper(II) chloride dihydrate in a 1:2 molar ratio. EXAFS and UV-vis-near-IR optical absorption spectroscopy have been used to compare the coordination sphere of the cupric ion in this ionic liquid with that of the cupric ion in solutions of 0.1 M of CuCl(2)·2H(2)O in solvents with varying molar ratios of choline chloride and water. The EXAFS data show that species with three chloride ions and one water molecule coordinated to the cupric ion as well as species with two chloride molecules and two water molecules coordinated to the cupric ion are present in the ionic liquid. On the other hand, a fully hydrated copper(II) ion is formed in an aqueous solution free of choline chloride, and the tetrachlorocuprate(II) complex forms in aqueous choline chloride solutions with more than 50 wt % of choline chloride. In solutions with between 0 and 50 wt % of choline chloride, mixed chloro-aquo complexes occur. Upon standing at room temperature, crystals of CuCl(2)·2H(2)O and of Cu(choline)Cl(3) formed in the ionic liquid. Cu(choline)Cl(3) is the first example of a choline cation coordinating to a transition-metal ion. Crystals of [choline](3)[CuCl(4)][Cl] and of [choline](4)[Cu(4)Cl(10)O] were also synthesized from molecular or ionic liquid solvents, and their crystal structures were determined.  相似文献   

17.
Deep eutectic solvents (DESs) show particular properties compared to ionic liquids and other traditional organic solvents. Controlled synthesis of chiral materials in DESs is unprecedented due to the complex interplays between DESs and solutes. In this work, all bio-derived chiral DESs were prepared using choline chloride or cyclodextrin as hydrogen bonding acceptors and natural chiral acids as donors, which performed as chiral matrices for the rational synthesis of chiroptical materials by taking advantage of the efficient chirality transfer between the DESs and solutes. In a very selective manner, building units with molecular pockets could facilitate strong binding affinity towards chiral acid components of DESs disregarding the presence of competitive hydrogen bonding acceptors. Chirality transfer from DESs to nanoassemblies leads to chirality amplification in the presence of minimal amounts of entrapped chiral acids, thanks to the spontaneous symmetry breaking of solutes during aggregation. This work utilizes chiral DESs to control supramolecular chirality, and illustrates the structural basis for the fabrication of DES-based chiral materials.  相似文献   

18.
随着绿色化学的不断发展,如何在分析过程中应用和体现绿色化学特点,避免分析过程对环境产生二次污染及对人员造成危害也得到了关注。开发和使用具有绿色化学特点的溶剂和方法是分析工作者努力的方向之一。在已经出现的新溶剂中,低共熔溶剂(DES)与离子液体(ILs)物理性质相似,并具有环境友好、不可燃、生物降解、价廉、易制备等特点,因而近几年来获得了迅速发展。该文总结了低共熔溶剂的制备、性质及分类,综述了近年来其在萃取和分离中的应用进展。  相似文献   

19.
Amine absorption (or amine scrubbing) is currently the most established method for CO2 capture; however, it has environmental shortcomings and is energy-intensive. Deep eutectic solvents (DESs) are an interesting alternative to conventional amines. Due to their biodegradability, lower toxicity and lower prices, DESs are considered to be “more benign” absorbents for CO2 capture than ionic liquids. In this work, the CO2 absorption capacity of choline-chloride/levulinic-acid-based (ChCl:LvAc) DESs was measured at different temperatures, pressures and stirring speeds using a vapour–liquid equilibrium rig. DES regeneration was performed using a heat treatment method. The DES compositions studied had ChCl:LvAc molar ratios of 1:2 and 1:3 and water contents of 0, 2.5 and 5 mol%. The experimental results showed that the CO2 absorption capacity of the ChCl:LvAc DESs is strongly affected by the operating pressure and stirring speed, moderately affected by the temperature and minimally affected by the hydrogen bond acceptor (HBA):hydrogen bond donator (HBD) molar ratio as well as water content. Thermodynamic properties for CO2 absorption were calculated from the experimental data. The regeneration of the DESs was performed at different temperatures, with the optimal regeneration temperature estimated to be 80 °C. The DESs exhibited good recyclability and moderate CO2/N2 selectivity.  相似文献   

20.
Cotton fabrics with antibacterial properties were prepared by the treatment with 3,3′4,4′-benzophenone tetracarboxylic dianhydride (BPTCD) in a combined process of shaking immersion in dyeing machine and pad-dry-cure. Environmentally-benign choline chloride (ChCl)-based deep eutectic solvents (DESs) were mainly examined as treatment media instead of using organic solvent. The results revealed that cotton fabrics treated with BPTCD in urea-ChCl DES showed a strong ester carbonyl peak in fourier transform infrared (FTIR) analysis, indicating fixation of BPTCD on cotton cellulose. Detailed characterizations of the BPTCD-treated cotton were carried out by FTIR, thermogravimetric analysis, scanning electron microscopy, dye staining, and evaluation of hydrophilicity and strength. The treated fabrics demonstrated a high level of antibacterial characteristics before and after UV irradiation. This indicated that addition of ChCl could enhance antibacterial activity of cotton before UV irradiation. Therefore, use of ChCl-based DES along with BPTCD incorporation provided environmentally-acceptable and economically-feasible treatment process for preparation of novel antibacterial cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号