首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Let $(Q(k):k\ge 0)$ be an $M/M/1$ queue with traffic intensity $\rho \in (0,1).$ Consider the quantity $$\begin{aligned} S_{n}(p)=\frac{1}{n}\sum _{j=1}^{n}Q\left( j\right) ^{p} \end{aligned}$$ for any $p>0.$ The ergodic theorem yields that $S_{n}(p) \rightarrow \mu (p) :=E[Q(\infty )^{p}]$ , where $Q(\infty )$ is geometrically distributed with mean $\rho /(1-\rho ).$ It is known that one can explicitly characterize $I(\varepsilon )>0$ such that $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n}\log P\big (S_{n}(p)<\mu \left( p\right) -\varepsilon \big ) =-I\left( \varepsilon \right) ,\quad \varepsilon >0. \end{aligned}$$ In this paper, we show that the approximation of the right tail asymptotics requires a different logarithm scaling, giving $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n^{1/(1+p)}}\log P\big (S_{n} (p)>\mu \big (p\big )+\varepsilon \big )=-C\big (p\big ) \varepsilon ^{1/(1+p)}, \end{aligned}$$ where $C(p)>0$ is obtained as the solution of a variational problem. We discuss why this phenomenon—Weibullian right tail asymptotics rather than exponential asymptotics—can be expected to occur in more general queueing systems.  相似文献   

2.
We introduce a method of proving maximal inequalities for Hilbert- space-valued differentially subordinate local martingales. As an application, we prove that if $X=(X_t)_{t\ge 0},\, Y=(Y_t)_{t\ge 0}$ are local martingales such that $Y$ is differentially subordinate to $X$ , then $$\begin{aligned} ||Y||_1\le \beta ||\sup _{t\ge 0}|X_t|\;||_1, \end{aligned}$$ where $\beta =2.585\ldots $ is the best possible.  相似文献   

3.
Let $\{\mu _{t}^{(i)}\}_{t\ge 0}$ ( $i=1,2$ ) be continuous convolution semigroups (c.c.s.) of probability measures on $\mathbf{Aff(1)}$ (the affine group on the real line). Suppose that $\mu _{1}^{(1)}=\mu _{1}^{(2)}$ . Assume furthermore that $\{\mu _{t}^{(1)}\}_{t\ge 0}$ is a Gaussian c.c.s. (in the sense that its generating distribution is a sum of a primitive distribution and a second-order differential operator). Then $\mu _{t}^{(1)}=\mu _{t}^{(2)}$ for all $t\ge 0$ . We end up with a possible application in mathematical finance.  相似文献   

4.
We propose a first-order augmented Lagrangian algorithm (FALC) to solve the composite norm minimization problem $$\begin{aligned} \begin{array}{ll} \min \limits _{X\in \mathbb{R }^{m\times n}}&\mu _1\Vert \sigma (\mathcal{F }(X)-G)\Vert _\alpha +\mu _2\Vert \mathcal{C }(X)-d\Vert _\beta ,\\ \text{ subject} \text{ to}&\mathcal{A }(X)-b\in \mathcal{Q }, \end{array} \end{aligned}$$ where $\sigma (X)$ denotes the vector of singular values of $X \in \mathbb{R }^{m\times n}$ , the matrix norm $\Vert \sigma (X)\Vert _{\alpha }$ denotes either the Frobenius, the nuclear, or the $\ell _2$ -operator norm of $X$ , the vector norm $\Vert .\Vert _{\beta }$ denotes either the $\ell _1$ -norm, $\ell _2$ -norm or the $\ell _{\infty }$ -norm; $\mathcal{Q }$ is a closed convex set and $\mathcal{A }(.)$ , $\mathcal{C }(.)$ , $\mathcal{F }(.)$ are linear operators from $\mathbb{R }^{m\times n}$ to vector spaces of appropriate dimensions. Basis pursuit, matrix completion, robust principal component pursuit (PCP), and stable PCP problems are all special cases of the composite norm minimization problem. Thus, FALC is able to solve all these problems in a unified manner. We show that any limit point of FALC iterate sequence is an optimal solution of the composite norm minimization problem. We also show that for all $\epsilon >0$ , the FALC iterates are $\epsilon $ -feasible and $\epsilon $ -optimal after $\mathcal{O }(\log (\epsilon ^{-1}))$ iterations, which require $\mathcal{O }(\epsilon ^{-1})$ constrained shrinkage operations and Euclidean projection onto the set $\mathcal{Q }$ . Surprisingly, on the problem sets we tested, FALC required only $\mathcal{O }(\log (\epsilon ^{-1}))$ constrained shrinkage, instead of the $\mathcal{O }(\epsilon ^{-1})$ worst case bound, to compute an $\epsilon $ -feasible and $\epsilon $ -optimal solution. To best of our knowledge, FALC is the first algorithm with a known complexity bound that solves the stable PCP problem.  相似文献   

5.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

6.
The self-affine measure $\mu _{M,D}$ relating to an expanding matrix $M\in M_{n}(\mathbb Z )$ and a finite digit set $D\subset \mathbb Z ^n$ is a unique probability measure satisfying the self-affine identity with equal weight. In the present paper, we shall study the spectrality of $\mu _{M,D}$ in the case when $|\det (M)|=p$ is a prime. The main result shows that under certain mild conditions, if there are two points $s_{1}, s_{2}\in \mathbb R ^{n}, s_{1}-s_{2}\in \mathbb Z ^{n}$ such that the exponential functions $e_{s_{1}}(x), e_{s_{2}}(x)$ are orthogonal in $L^{2}(\mu _{M,D})$ , then the self-affine measure $\mu _{M,D}$ is a spectral measure with lattice spectrum. This gives some sufficient conditions for a self-affine measure to be a lattice spectral measure.  相似文献   

7.
Let $k$ and $j$ be positive integers. We prove that the action of the two-dimensional singular integral operators $(S_\Omega )^{j-1}$ and $(S_\Omega ^*)^{j-1}$ on a Hilbert base for the Bergman space $\mathcal{A }^2(\Omega )$ and anti-Bergman space $\mathcal{A }^2_{-1}(\Omega ),$ respectively, gives Hilbert bases $\{ \psi _{\pm j , k } \}_{ k }$ for the true poly-Bergman spaces $\mathcal{A }_{(\pm j)}^2(\Omega ),$ where $S_\Omega $ denotes the compression of the Beurling transform to the Lebesgue space $L^2(\Omega , dA).$ The functions $\psi _{\pm j,k}$ will be explicitly represented in terms of the $(2,1)$ -hypergeometric polynomials as well as by formulas of Rodrigues type. We prove explicit representations for the true poly-Bergman kernels and more transparent representations for the poly-Bergman kernels of $\Omega $ . We establish Rodrigues type formulas for the poly-Bergman kernels of $\mathbb{D }$ .  相似文献   

8.
In this paper we describe the actions of the operator $S_\mathbb{D }$ or its adjoint $S_\mathbb{D }^*$ on the poly-Bergman spaces of the unit disk $\mathbb{D }.$ Let $k$ and $j$ be positive integers. We prove that $(S_\mathbb{D })^{j}$ is an isometric isomorphism between the true poly-Bergman subspace $\mathcal{A }_{(k)}^2(\mathbb{D })\ominus N_{(k),j}$ onto the true poly-Bergman space $\mathcal{A }_{(j+k)}^2(\mathbb{D }),$ where the linear space $N_{(k),j}$ have finite dimension $j.$ The action of $(S_\mathbb{D })^{j-1}$ on the canonical Hilbert base for the Bergman subspace $\mathcal{A }^2(\mathbb{D })\ominus \mathcal{P }_{j-1},$ gives a Hilbert base $\{ \phi _{ j , k } \}_{ k }$ for $\mathcal{A }_{(j)}^2(\mathbb{D }).$ It is shown that $\{ \phi _{ j , k } \}_{ j, k }$ is a Hilbert base for $L^2(\mathbb{D },d A)$ such that whenever $j$ and $k$ remain constant we obtain a Hilbert base for the true poly-Bergman space $\mathcal{A }_{(j)}^2(\mathbb{D })$ and $\mathcal{A }_{(-k)}^2(\mathbb{D }),$ respectively. The functions $\phi _{ j , k }$ are polynomials in $z$ and $\overline{z}$ and are explicitly given in terms of the $(2,1)$ -hypergeometric polynomials. We prove explicit representations for the true poly-Bergman kernels and the Koshelev representation for the poly-Bergman kernels of $\mathbb{D }.$ The action of $S_\Pi $ on the true poly-Bergman spaces of the upper half-plane $\Pi $ allows one to introduce Hilbert bases for the true poly-Bergman spaces, and to give explicit representations of the true poly-Bergman and poly-Bergman kernels.  相似文献   

9.
Conservative subtheories of ${{R}^{1}_{2}}$ and ${{S}^{1}_{2}}$ are presented. For ${{S}^{1}_{2}}$ , a slight tightening of Je?ábek??s result (Math Logic Q 52(6):613?C624, 2006) that ${T^{0}_{2} \preceq_{\forall \Sigma^{b}_{1}}S^{1}_{2}}$ is presented: It is shown that ${T^{0}_{2}}$ can be axiomatised as BASIC together with induction on sharply bounded formulas of one alternation. Within this ${\forall\Sigma^{b}_{1}}$ -theory, we define a ${\forall\Sigma^{b}_{0}}$ -theory, ${T^{-1}_{2}}$ , for the ${\forall\Sigma^{b}_{0}}$ -consequences of ${S^{1}_{2}}$ . We show ${T^{-1}_{2}}$ is weak by showing it cannot ${\Sigma^{b}_{0}}$ -define division by 3. We then consider what would be the analogous ${\forall\hat\Sigma^{b}_{1}}$ -conservative subtheory of ${R^{1}_{2}}$ based on Pollett (Ann Pure Appl Logic 100:189?C245, 1999. It is shown that this theory, ${{T}^{0,\left\{2^{(||\dot{id}||)}\right\}}_{2}}$ , also cannot ${\Sigma^{b}_{0}}$ -define division by 3. On the other hand, we show that ${{S}^{0}_{2}+open_{\{||id||\}}}$ -COMP is a ${\forall\hat\Sigma^{b}_{1}}$ -conservative subtheory of ${R^{1}_{2}}$ . Finally, we give a refinement of Johannsen and Pollett (Logic Colloquium?? 98, 262?C279, 2000) and show that ${\hat{C}^{0}_{2}}$ is ${\forall\hat\Sigma^{b}_{1}}$ -conservative over a theory based on open cl-comprehension.  相似文献   

10.
The Golub–Kahan–Lanczos (GKL) bidiagonal reduction generates, by recurrence, the matrix factorization of $X \in \mathbb{R }^{m \times n}, m \ge n$ , given by $$\begin{aligned} X = UBV^T \end{aligned}$$ where $U \in \mathbb{R }^{m \times n}$ is left orthogonal, $V \in \mathbb{R }^{n \times n}$ is orthogonal, and $B \in \mathbb{R }^{n \times n}$ is bidiagonal. When the GKL recurrence is implemented in finite precision arithmetic, the columns of $U$ and $V$ tend to lose orthogonality, making a reorthogonalization strategy necessary to preserve convergence of the singular values. The use of an approach started by Simon and Zha (SIAM J Sci Stat Comput, 21:2257–2274, 2000) that reorthogonalizes only one of the two left orthogonal matrices $U$ and $V$ is shown to be very effective by the results presented here. Supposing that $V$ is the matrix reorthogonalized, the reorthogonalized GKL algorithm proposed here is modeled as the Householder Q–R factorization of $\left( \begin{array}{c} 0_{n \times k} \\ X V_k \end{array}\right) $ where $V_k = V(:,1:k)$ . That model is used to show that if $\varepsilon _M $ is the machine unit and $$\begin{aligned} \bar{\eta }= \Vert \mathbf{tril }(I-V^T\!~V)\Vert _F, \end{aligned}$$ where $\mathbf{tril }(\cdot )$ is the strictly lower triangular part of the contents, then: (1) the GKL recurrence produces Krylov spaces generated by a nearby matrix $X + \delta X$ , $\Vert \delta X\Vert _F = \mathcal O (\varepsilon _M + \bar{\eta }) \Vert X\Vert _F$ ; (2) singular values converge in the Lanczos process at the rate expected from the GKL algorithm in exact arithmetic on a nearby matrix; (3) a new proposed algorithm for recovering leading left singular vectors produces better bounds on loss of orthogonality and residual errors.  相似文献   

11.
We treat the partial regularity of locally bounded local minimizers $u$ for the $p(x)$ -energy functional $$\begin{aligned} \mathcal{E }(v;\Omega ) = \int \left( g^{\alpha \beta }(x)h_{ij}(v) D_\alpha v^i (x) D_\beta v^j (x) \right) ^{p(x)/2} dx, \end{aligned}$$ defined for maps $v : \Omega (\subset \mathbb R ^m) \rightarrow \mathbb R ^n$ . Assuming the Lipschitz continuity of the exponent $p(x) \ge 2$ , we prove that $u \in C^{1,\alpha }(\Omega _0)$ for some $\alpha \in (0,1)$ and an open set $\Omega _0 \subset \Omega $ with $\dim _\mathcal{H }(\Omega \setminus \Omega _0) \le m-[\gamma _1]-1$ , where $\dim _\mathcal{H }$ stands for the Hausdorff dimension, $[\gamma _1]$ the integral part of $\gamma _1$ , and $\gamma _1 = \inf p(x)$ .  相似文献   

12.
Let $A$ be a (possibly unbounded) self-adjoint operator on a separable Hilbert space $\mathfrak H .$ Assume that $\sigma $ is an isolated component of the spectrum of $A$ , that is, $\mathrm{dist}(\sigma ,\Sigma )=d>0$ where $\Sigma =\mathrm spec (A)\setminus \sigma .$ Suppose that $V$ is a bounded self-adjoint operator on $\mathfrak H $ such that $\Vert V\Vert <d/2$ and let $L=A+V$ , $\mathrm{Dom }(L)=\mathrm{Dom }(A).$ Denote by $P$ the spectral projection of $A$ associated with the spectral set $\sigma $ and let $Q$ be the spectral projection of $L$ corresponding to the closed $\Vert V\Vert $ -neighborhood of $\sigma .$ Introducing the sequence $$\begin{aligned} \varkappa _n=\frac{1}{2}\left(1-\frac{(\pi ^2-4)^n}{(\pi ^2+4)^n}\right), \quad n\in \{0\}\cup {\mathbb N }, \end{aligned}$$ we prove that the following bound holds: $$\begin{aligned} \arcsin (\Vert P-Q\Vert )\le M_\star \left(\frac{\Vert V\Vert }{d}\right), \end{aligned}$$ where the estimating function $M_\star (x)$ , $x\in \bigl [0,\frac{1}{2}\bigr )$ , is given by $$\begin{aligned} M_\star (x)=\frac{1}{2}\,\,n_{_\#}(x)\,\arcsin \left(\frac{4\pi }{\pi ^2+4}\right) +\frac{1}{2}\,\arcsin \left(\frac{\pi ( x-\varkappa _{n_{_\#}(x)})}{1-2\varkappa _{n_{_\#}(x)})}\right), \end{aligned}$$ with $n_{_\#}(x)=\max \left\{ n\,\bigr |\,\,n\in \{0\}\cup {\mathbb N }\,, \varkappa _n\le x\right\} $ . The bound obtained is essentially stronger than the previously known estimates for $\Vert P-Q\Vert .$ Furthermore, this bound ensures that $\Vert P-Q\Vert <1$ and, thus, that the spectral subspaces $\mathrm{Ran }(P)$ and $\mathrm{Ran }(Q)$ are in the acute-angle case whenever $\Vert V\Vert <c_\star \,d$ , where $$\begin{aligned} c_\star =16\,\,\frac{\pi ^6-2\pi ^4+32\pi ^2-32}{(\pi ^2+4)^4}=0.454169\ldots . \end{aligned}$$ Our proof of the above results is based on using the triangle inequality for the maximal angle between subspaces and on employing the a priori generic $\sin 2\theta $ estimate for the variation of a spectral subspace. As an example, the boundedly perturbed quantum harmonic oscillator is discussed.  相似文献   

13.
In this paper, we study surfaces in Lorentzian product spaces ${{\mathbb{M}^{2}(c) \times \mathbb{R}_1}}$ . We classify constant angle spacelike and timelike surfaces in ${{\mathbb{S}^{2} \times \mathbb{R}_1}}$ and ${{\mathbb{H}^{2} \times \mathbb{R}_1}}$ . Moreover, complete classifications of spacelike surfaces in ${{\mathbb{S}^{2} \times \mathbb{R}_1}}$ and ${{\mathbb{H}^{2} \times \mathbb{R}_1}}$ and timelike surfaces in ${{\mathbb{M}^{2}(c) \times \mathbb{R}_1}}$ with a canonical principal direction are obtained. Finally, a new characterization of the catenoid of the 3rd kind is established, as the only minimal timelike surface with a canonical principal direction in Minkowski 3–space.  相似文献   

14.
This paper is concerned with the existence, multiplicity and concentration behavior of positive solutions for the critical Kirchhoff-type problem $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -\left(\varepsilon ^2a+\varepsilon b\int _{\mathbb{R }^{3}}|\nabla u|^2\right)\Delta u+V(x)u=u^{2^*-1}+\lambda f(u)&\text{ in}~{\mathbb{R }^{3}},\\ u\in H^1({\mathbb{R }^{3}}), ~u(x)>0&\text{ in}~{\mathbb{R }^{3}}, \end{array}\right. \end{aligned}$$ where $\varepsilon $ and $\lambda $ are positive parameters, and $a,b>0$ are constants, $2^*(=6)$ is the critical Sobolev exponent in dimension three, $V$ is a positive continuous potential satisfying some conditions, and $f$ is a subcritical nonlinear term. We use the variational methods to relate the number of solutions with the topology of the set where $V$ attains its minimum, for all sufficiently large $\lambda $ and small $\varepsilon $ .  相似文献   

15.
We consider the critical focusing wave equation $(-\partial _t^2+\Delta )u+u^5=0$ in ${\mathbb{R }}^{1+3}$ and prove the existence of energy class solutions which are of the form $$\begin{aligned} u(t,x)=t^\frac{\mu }{2}W(t^\mu x)+\eta (t,x) \end{aligned}$$ in the forward lightcone $\{(t,x)\in {\mathbb{R }}\times {\mathbb{R }}^3: |x|\le t, t\gg 1\}$ where $W(x)=(1+\frac{1}{3} |x|^2)^{-\frac{1}{2}}$ is the ground state soliton, $\mu $ is an arbitrary prescribed real number (positive or negative) with $|\mu |\ll 1$ , and the error $\eta $ satisfies $$\begin{aligned} \Vert \partial _t \eta (t,\cdot )\Vert _{L^2(B_t)} +\Vert \nabla \eta (t,\cdot )\Vert _{L^2(B_t)}\ll 1,\quad B_t:=\{x\in {\mathbb{R }}^3: |x|<t\} \end{aligned}$$ for all $t\gg 1$ . Furthermore, the kinetic energy of $u$ outside the cone is small. Consequently, depending on the sign of $\mu $ , we obtain two new types of solutions which either concentrate as $t\rightarrow \infty $ (with a continuum of rates) or stay bounded but do not scatter. In particular, these solutions contradict a strong version of the soliton resolution conjecture.  相似文献   

16.
The purpose of this paper is to bring a new light on the state-dependent Hamilton–Jacobi equation and its connection with the Hopf–Lax formula in the framework of a Carnot group $(\mathbf G ,\circ ).$ The equation we shall consider is of the form $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} u_{t}+ \Psi (X_{1}u, \ldots , X_{m}u)=0\qquad &{}(x,t)\in \mathbf G \times (0,\infty ) \\ {u}(x,0)=g(x)&{}x\in \mathbf G , \end{array} \right. \end{aligned}$$ where $X_{1},\ldots , X_{m}$ are a basis of the first layer of the Lie algebra of the group $\mathbf G ,$ and $\Psi : \mathbb{R }^{m} \rightarrow \mathbb{R }$ is a superlinear, convex function. The main result shows that the unique viscosity solution of the Hamilton–Jacobi equation can be given by the Hopf–Lax formula $$\begin{aligned} u(x,t) = \inf _{y\in \mathbf G }\left\{ t \Psi ^\mathbf{G }\left( \delta _{\frac{1}{t}}(y^{-1}\circ x)\right) + g(y) \right\} , \end{aligned}$$ where $\Psi ^\mathbf{G }:\mathbf G \rightarrow \mathbb{R }$ is the $\mathbf G $ -Legendre–Fenchel transform of $\Psi ,$ defined by a control theoretical approach. We recover, as special cases, some known results like the classical Hopf–Lax formula in the Euclidean spaces $\mathbb{R }^n,$ showing that $\Psi ^{\mathbb{R }^n}$ is the Legendre–Fenchel transform $\Psi ^*$ of $\Psi ;$ moreover, we recover the result by Manfredi and Stroffolini in the Heisenberg group for particular Hamiltonian function $\Psi .$ In this paper we follow an optimal control problem approach and we obtain several properties for the value functions $u$ and $\Psi ^\mathbf G .$   相似文献   

17.
Let $\pi S(t)$ denote the argument of the Riemann zeta-function, $\zeta (s)$ , at the point $s=\frac{1}{2}+it$ . Assuming the Riemann hypothesis, we present two proofs of the bound $$\begin{aligned} |S(t)| \le \left(\frac{1}{4} + o(1) \right)\frac{\log t}{\log \log t} \end{aligned}$$ for large $t$ . This improves a result of Goldston and Gonek by a factor of 2. The first method consists of bounding the auxiliary function $S_1(t) = \int _0^{t} S(u) \> \text{ d}u$ using extremal functions constructed by Carneiro, Littmann and Vaaler. We then relate the size of $S(t)$ to the size of the functions $S_1(t\pm h)-S_1(t)$ when $h\asymp 1/\log \log t$ . The alternative approach bounds $S(t)$ directly, relying on the solution of the Beurling–Selberg extremal problem for the odd function $f(x) = \arctan \left(\frac{1}{x}\right) - \frac{x}{1 + x^2}$ . This draws upon recent work by Carneiro and Littmann.  相似文献   

18.
Given a eigenvalue $\mu _{0m}^2$ of $-\Delta $ in the unit ball $B_1$ , with Neumann boundary conditions, we prove that there exists a class $\mathcal{D}$ of $C^{0,1}$ -domains, depending on $\mu _{0m} $ , such that if $u$ is a no trivial solution to the following problem $ \Delta u+\mu u=0$ in $\Omega , u=0$ on $\partial \Omega $ , and $ \int \nolimits _{\partial \Omega }\partial _{\mathbf{n}}u=0$ , with $\Omega \in \mathcal{D}$ , and $\mu =\mu _{0m}^2+o(1)$ , then $\Omega $ is a ball. Here $\mu $ is a eigenvalue of $-\Delta $ in $\Omega $ , with Neumann boundary conditions.  相似文献   

19.
This work starts with the introduction of a family of differential energy operators. Energy operators $({\varPsi}_{R}^{+}, {\varPsi}_{R}^{-})$ were defined together with a method to decompose the wave equation in a previous work. Here the energy operators are defined following the order of their derivatives $(\varPsi^{-}_{k}, \varPsi^{+}_{k}, k=\{0,\pm 1,\pm 2,\ldots\})$ . The main part of the work demonstrates for any smooth real-valued function f in the Schwartz space $(\mathbf{S}^{-}(\mathbb{R}))$ , the successive derivatives of the n-th power of f ( $n \in \mathbb{Z}$ and n≠0) can be decomposed using only $\varPsi^{+}_{k}$ (Lemma); or if f in a subset of $\mathbf{S}^{-}(\mathbb{R})$ , called $\mathbf{s}^{-}(\mathbb{R})$ , $\varPsi^{+}_{k}$ and $\varPsi^{-}_{k}$ ( $k\in \mathbb{Z}$ ) decompose in a unique way the successive derivatives of the n-th power of f (Theorem). Some properties of the Kernel and the Image of the energy operators are given along with the development. Finally, the paper ends with the application to the energy function.  相似文献   

20.
Let $G$ be a complex affine algebraic reductive group, and let $K\,\subset \, G$ be a maximal compact subgroup. Fix h $\,:=\,(h_{1}\,,\ldots \,,h_{m})\,\in \, K^{m}$ . For $n\, \ge \, 0$ , let $\mathsf X _{\mathbf{{h}},n}^{G}$ (respectively, $\mathsf X _{\mathbf{{h}},n}^{K}$ ) be the space of equivalence classes of representations of the free group on $m+n$ generators in $G$ (respectively, $K$ ) such that for each $1\le i\le m$ , the image of the $i$ -th free generator is conjugate to $h_{i}$ . These spaces are parabolic analogues of character varieties of free groups. We prove that $\mathsf X _{\mathbf{{h}},n}^{K}$ is a strong deformation retraction of $\mathsf X _{\mathbf{{h}},n}^{G}$ . In particular, $\mathsf X _{\mathbf{{h}},n}^{G}$ and $\mathsf X _{\mathbf{{h}},n}^{K}$ are homotopy equivalent. We also describe explicit examples relating $\mathsf X _{\mathbf{{h}},n}^{G}$ to relative character varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号