首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
蓝奔月  史海峰 《物理化学学报》2015,30(12):2177-2196
传统化石能源燃烧产生CO2引起的地球变暖和能源短缺已经成为一个严重的全球性问题. 利用太阳光和光催化材料将CO2还原为碳氢燃料, 不仅可以减少空气中CO2浓度, 降低温室效应的影响, 还可以提供碳氢燃料, 缓解能源短缺问题, 因此日益受到各国科学家的高度关注. 本文综述了光催化还原CO2为碳氢燃料的研究进展, 介绍了光催化还原CO2的反应机理, 并对现阶段报道的光催化还原CO2材料体系进行了整理和分类, 包括TiO2光催化材料, ABO3型钙钛矿光催化材料, 尖晶石型光催化材料, 掺杂型光催化材料, 复合光催化材料, V、W、Ge、Ga基光催化材料及石墨烯基光催化材料. 评述了各种材料体系的特点及光催化性能的一些影响因素. 最后对光催化还原CO2的研究前景进行了展望.  相似文献   

2.
光催化还原CO2技术在CO2的治理与利用方面有着潜在的应用价值和良好的开发前景。该文简要综述了近年来用于光催化还原CO2反应的TiO2光催化剂材料,包括纯TiO2催化剂、负载型TiO2催化剂、金属改性TiO2催化剂、半导体复合TiO2催化剂和有机光敏化TiO2催化剂等,并介绍了各类催化剂光催化还原CO2的反应性能。  相似文献   

3.
光催化还原CO2生成烃类燃料是一种可同时解决全球变暖和能源危机问题的最有效途径之一。尽管这方面的研究已经取得了一定的进展,但是整体的光催化转换效率还非常低。因此,需要发展更加高效的催化剂。由于半导体材料禁带宽度与太阳光谱相匹配,人们已经对其进行了广泛研究。其中TiO2因具有无毒、强氧化性以及良好的光学和电学性质等而成为最主要的研究对象。但是对于光催化还原CO2反应来说, TiO2仍存在很多不足,如只能吸收太阳光谱中的紫外光,光生载流子会快速结合,以及光生空穴的强氧化能力等,这些都限制了其光催化还原CO2的效率。采用窄禁带宽度半导体修饰TiO2是解决上述不足的有效途径之一。本文采用简单的电化学方法成功制备了一种由窄禁带半导体Cu2O修饰的TiO2纳米管(TNTs)的复合物,并运用扫描电子显微镜(SEM)、X射线衍射(XRD)以及X射线光电子能谱(XPS)表征了所制备复合物的形貌、化学组成和结晶度。表征结果显示,所制备的TiO2为整齐排列的纳米管阵列结构;复合物中的纳米颗粒为Cu2O;当电化学沉积Cu2O的时间为5 min时,得到的Cu2O纳米颗粒初步呈类八面体结构。随着沉积时间的增加, Cu2O颗粒尺寸增加,具有八面体结构。 XRD和XPS结果表明, TiO2纳米管为锐钛矿,八面体Cu2O纳米颗粒的主要暴露晶面为(111)面。我们还进一步研究了不同量Cu2O纳米颗粒修饰的TiO2纳米管复合物在可见光以及模拟太阳光下光催化还原CO2的能力。在可见光下,由于自身的禁带宽度,纯净的TiO2纳米管没有任何光催化还原CO2的能力;经过Cu2O纳米颗粒的修饰,复合物显现出明显的光催化还原CO2的能力,其中经过30 min Cu2O沉积的TNTs具有最高的光催化效率。在模拟太阳光下,经过15 min Cu2O沉积的TNTs具有最高的光催化效率。在所有光催化还原CO2过程中,主要碳氢产物为甲烷。为了深入地理解该复合体系在还原CO2中的高催化效率,我们对催化剂进行了进一步的表征。紫外-可见漫反射光谱表明, Cu2O八面体纳米颗粒的沉积将TNTs的吸收光谱拓展到了可见光区域,提高了复合物对太阳光的吸收能力。此外,我们还通过测试所制样品的光电流反应、荧光发射光谱以及电化学阻抗谱,研究了催化剂中光生电子和空穴的分离和迁移能力。结果表明,适量的Cu2O沉积提高了复合物对光的吸收能力,增加了光生载流子的数量,从而使更多的光生载流子参与光催化反应。综上,本文首次报道了八面体Cu2O纳米颗粒修饰TNTs复合物的光催化还原CO2的能力。在一定量的Cu2O纳米颗粒修饰下,该复合物在光催化还原CO2生成烃类反应中表现出高效性。经过一系列详细的表征和讨论,我们认为其高效性主要源于三个方面:(1) TNTs的管状结构为反应物的吸附提供了大量的活性位点,同时一维的管状结构更有利于光生载流子的运载,从而提高了电子和空穴的分离;(2) Cu2O纳米颗粒的修饰提高了催化剂对光的吸收,促进催化剂最大程度地利用太阳光;(3) TiO2和Cu2O之间导带以及价带位置的匹配,在减少光生载流子复合的同时也降低了TiO2价带上空穴的氧化能力,从而抑制了CO2还原产物的再氧化过程。  相似文献   

4.
光催化还原CO2的研究现状和发展前景   总被引:1,自引:0,他引:1  
吴聪萍  周勇  邹志刚 《催化学报》2011,(10):1565-1572
综述了光催化还原CO2的研究进展,并重点介绍了本课题组在光催化还原CO2为碳氢燃料方面的研究工作,通过该途径可降低CO2在大气中的排放浓度,还可将CO2转化为烷烃、醇或其它有机物质,从而实现碳材料的再循环使用.最后展望了该研究领域的前景.  相似文献   

5.
光催化二氧化碳还原反应(光催化CO2RR)是将惰性CO2转化为高价值化学品的最具前景的策略之一。光催化CO2RR的成功取决于高效催化剂的使用,尽管目前已取得相当的进展,但光催化过程仍面临着光电效应弱和光生载流子易复合等问题,严重制约了CO2还原的效率。稀土离子具有独特的f电子结构和尤其丰富的电子能级,可作为光生电子的“储存器”并兼具抑制光生载流子复合的功能,因此电子能更有效地用于CO2RR。镧系金属离子的强亲氧性和高配位需求,使其易于掺杂进其他氧化物半导体的晶格中,不仅能够稳定半导体复合物的晶相,而且能够有效地调控氧空位的浓度,从而实现半导体光催化剂性能调控和优化。此外,镧系金属亦能以原子级分散方式吸附在半导体表面或实现体相掺杂,直接作为活性位点提升光生电子的传递与利用。本文总结和探讨了稀土纳米材料在光催化CO2RR反应中的不同作用形式,从包括单(纯)稀土半导体材料、负载助催化剂的稀土半导体材料、掺杂稀土半导体材料和稀土半导体-其他半导体的复合材料等四方面...  相似文献   

6.
研究了共溶剂、电子受体和表面改性等因素对TiO2光催化萘直接合成α-萘酚反应的影响.纳米TiO2催化剂在紫外光照射下产生·OH,使得萘羟基化得到α-萘酚.在TiO2体系中加入Fe3+,Fe2+,Fe3++H2O2和Fe2++H2O2时,均可有效提高萘转化率和α-萘酚收率,其中以体系中加入Fe3++H2O2时,α-萘酚收...  相似文献   

7.
系统总结了金属有机框架(MOFs)基材料在光催化还原CO2中的最新研究进展, 其中包括MOFs直接作为光催化剂和作为复合光催化2个主要部分, 讨论了MOFs基光催化剂在催化还原CO2方面展现出的独特优势, 并对MOFs基光催化剂的结构稳定性与CO2转化效率等问题进行讨论与分析, 对未来发展趋势进行了展望.  相似文献   

8.
氢还原二氧化钛光催化降解磺基水杨酸的研究   总被引:13,自引:0,他引:13  
研究了由偏钛酸在不同温度下焙烧制成的TiO2,经氢还原后用于光催化降解磺基水杨酸(SSal) 以及TiO2的漫反射光谱和荧光光谱特征。结果表明,锐钛型TiO2在经550℃ 氢还原处理120min后,光催化活性明显提高;600℃条件下焙烧制得的TiO2,经氢还原后其光催化降解SS al的反应活性最高。漫反射光谱结果表明,800℃条件下焙烧制得的TiO2,开始出现转晶现象,从锐钛型逐渐向金红石型过渡。TiO2荧光光谱的峰面积(F)和倍频峰面积(R)的比值越大。TiO2光催化降解SSal的活性越高,提出了氢还原后TiO2的光催化作用机制。  相似文献   

9.
化石燃料的大量燃烧不仅造成能源危机,而且排放的二氧化碳(CO2)会使气候变暖。以清洁、储量丰富的太阳光作为能量来源,将CO2光催化还原为高附加值的化学产品是缓解当前环境问题和能源问题的主要方法之一。然而,CO2在常温常压下非常的稳定,因此需要设计并构筑高效光催化剂来捕捉和转化CO2,以达到高效光催化CO2还原的目的。在众多研究的光催化剂中,金属纳米簇因其具有独特的结构特点、优异的物理和化学性质,所以在光催化CO2还原领域得到了广泛的应用。基于此,我们首先对金属纳米簇进行了分类,将其分为贵金属纳米簇和非贵金属纳米簇;然后分别对贵金属和非贵金属纳米簇在光催化CO2还原中的研究进展进行了归纳与总结。本文通过及时全面概述近几年该领域的研究进展,从而为未来研究方向提供新思路。  相似文献   

10.
纳米TiO2-ZnO复合材料的合成、结构与光催化性能   总被引:31,自引:0,他引:31       下载免费PDF全文
二氧化钛是一种重要的半导体光催化材料,它具有光催化降解有机物活性高、化学性质稳定、耐化学和光化学腐蚀以及无毒等特性,因而在污水处理及空气净化等方面有着重大的潜在应用价值。然而二氧化钛是宽禁带材料,仅能吸收太阳光谱的紫外光部分,太阳能利用效率低,通常需要用紫外光  相似文献   

11.
二氧化碳催化还原反应中的光催化剂   总被引:5,自引:0,他引:5  
陈静  刘引烽  华家栋 《化学通报》2003,66(3):184-191
总结了CO2光催化还原反应中催化剂的应用,主要涉及TiO2,CdS以及铁氧化物,由于它们自身在反应中存在着一定的缺陷,因而在应用中往往需要对其进行改性,以改变其电子结构和光响应特性,从而提高反应的光催化效率,另外,对催化反应过程所涉及的机理也相应作了介绍。  相似文献   

12.
以商品TiO2-P25为原料,通过浸渍法负载一定量过渡金属Cu,得到一系列不同含量的CuOx/TiO2光催化剂。利用X射线衍射(XRD),X-射线光电子能谱(XPS),BET,高分辨率透射镜(HRTEM),X射线荧光光谱(XRF)和光致发光光谱(PL)等方法对催化剂进行了详细表征,在自建的光催化反应器中评价了气态水光催化还原CO2反应的活性和CH4收率。结果表明负载CuOx后的TiO2纳米材料光催化性能显著提高,其中1%CuOx/TiO2样品紫外光照72 h后,CH4生成量达到了24.86 µmol•gTi-1。同时,CuOx负载量、反应温度、反应时间等因素对CH4收率均有显著影响。  相似文献   

13.
半导体TiO2作为光催化剂,已被广泛应用于光催化废水处理及光催化储能[1,2]等方面的研究.人们不断开发高活性的新型光催化剂并对其反应机理进行了探索性研究[3],希望通过表面负载Pd、Ru、Pt或Rh等贵金属的小岛式颗粒以传递光生电子(或光生空穴).  相似文献   

14.
The acceleration of industrialization and the continuous upgradation of consumption structure has increased the atmospheric content of CO2 far beyond the past levels, leading to a serious global environmental problem. Photocatalytic reduction of CO2 is one of the most promising methods to solve the problem of rising atmospheric CO2 content. The core of this technology is to develop efficient, environment-friendly, and affordable photocatalysts. A photocatalyst is a semiconductor that can absorb photons from sunlight and produce electron-hole pairs to initiate a redox reaction. Owing to their low specific surface areas, significant electron-hole recombination, and less surface-active sites, bulk photocatalysts are not satisfactory. Ultrathin layered materials have shown great potential for photocatalytic CO2 reduction owing to their characteristics of large specific surface area, a large number of low-coordination surface atoms, short transfer distance from the inside to the catalyst surface, along with other advantages. Photoexcited electrons only need to cover a short distance to transfer to the nanowafer surface, and the speed of migrating electrons on the nanowafer surface is much higher than that in the layers or in the bulk catalyst. The ultrathin structure leads to significant coordinative unsaturation and even vacancy defects in the lattice structure of the atoms; while the former can be used as active sites for CO2 adsorption and reaction, the latter can improve the separation of the electron-hole pair. This review summarizes the latest developments in ultrathin layered photocatalysts for CO2 reduction. First, the photocatalytic reduction mechanism of CO2 is introduced briefly, and the factors governing product selectivity are explained. Second, the existing catalysts, such as g-C3N4, black phosphorus (BP), graphene oxide (GO), metal oxide, transition metal dichalcogenides (TMDCs), perovskite, BiOX (X = Cl, Br, I), layered double hydroxide (LDH), 2D-MOF, MXene, and two-dimensional honeycomb-like Ge―Si alloy compounds (gersiloxenes), are classified. In addition, the prevalent preparation methods are summarized, including mechanical stripping, gas stripping, liquid stripping, chemical etching, chemical vapor deposition (CVD), template method, self-assembly of surfactant, and the intermediate precursor method of lamellar Bi-oleate complex. Finally, we introduced the strategy of improving photocatalyst performance on the premise of maintaining its layered structure, including the factors of thickness adjustment, doping, structural defects, composite, etc. The future opportunities and challenges of ultrathin layered photocatalysts for the reduction of carbon dioxide have also been proposed.  相似文献   

15.
Inspired by the photosynthesis of green plants, various artificial photosynthetic systems have been proposed to solve the energy shortage and environmental problems. Water photosplitting, carbon dioxide photoreduction, and nitrogen photofixation are the main systems that are used to produce solar fuels such as hydrogen, methane, or ammonia. Although conducting artificial photosynthesis using man-made semiconducting materials is an ideal and potential approach to obtain solar energy, constructing an efficient photosynthetic system capable of producing solar fuels at a scale and cost that can compete with fossil fuels remains challenging. Therefore, exploiting the efficient and low-cost photocatalysts is crucial for boosting the three main photocatalytic processes (light-harvesting, surface/interface catalytic reactions, and charge generation and separation) of artificial photosynthetic systems. Among the various photocatalysts developed, the Z-scheme heterojunction composite system can increase the light-harvesting ability and remarkably suppress charge carrier recombination; it can also promote surface/interface catalytic reactions by preserving the strong reductive/oxidative capacity of the photoexcited electrons/holes, and therefore, it has attracted considerable attention. The continuing progress of Z-scheme nanostructured heterojunctions, which convert solar energy into chemical energy through photocatalytic processes, has witnessed the importance of these heterojunctions in further improving the overall efficiency of photocatalytic reaction systems for producing solar fuels. This review summarizes the progress of Z-scheme heterojunctions as photocatalysts and the advantages of using the direct Z-scheme heterojunctions over the traditional type Ⅱ, all-solid-state Z-schemel, and liquid-phase Z-scheme ones. The basic principle and corresponding mechanism of the two-step excitation are illustrated. In particular, applications of various types of Z-scheme nanostructured materials (inorganic, organic, and inorganic-organic hybrid materials) in photocatalytic energy conversion and different controlling/engineering strategies (such as extending the spectral absorption region, promoting charge transfer/separation and surface chemical modification) for enhancing the photocatalytic efficiency in the last five years are highlighted. Additionally, characterization methods (such as sacrificial reagent experiment, metal loading, radical trapping testing, in situ X-ray photoelectron spectroscopy, photocatalytic reduction experiments, Kelvin probe force microscopy, surface photovoltage spectroscopy, transient absorption spectroscopy, and theoretical calculation) of the Z-scheme photocatalytic mechanism, and the assessment criteria and methods of the photocatalytic performance are discussed. Finally, the challenges associated with Z-scheme heterojunctions and the possible growing trend are presented. We believe that this review will provide a new understanding of the breakthrough direction of photocatalytic performance and provide guidance for designing and constructing novel Z-scheme photocatalysts.   相似文献   

16.
以钛酸正丁酯为原料采用原位化学合成的新方法,以二价钴离子为模板剂在TiO2凝胶基质合成的同时,通过邻苯二腈的四聚反应将酞菁钴(CoPc)在TiO2表面原位合成,得到均匀掺杂的CoPc/TiO2光催化剂,用紫外-可见漫反射光谱、傅立叶变换-红外光谱等证实了CoPc的成功负载,并将其用于可见光下、水溶液中CO2的还原反应,通过比较还原反应的效率,确定此光催化剂的最佳制备条件为:CoPc在TiO2表面的摩尔负载量为3%,焙烧温度为200℃,溶胶搅拌时间为20 h,钛酸丁酯与邻苯二腈及钴离子同时加入溶胶体系中,采用此法制备的催化剂中CoPc酞菁环上的电子密度增加,有利于作为敏化剂的激发态CoPc向半导体TiO2的导带注入电子,而且CoPc被均匀分散于TiO2凝胶基质中,其上的“笼效应”有效避免了CoPc的迁移,使其二聚及多聚倾向大大减弱,此光催化剂用于CO2光还原,在可见光照射下,水溶液中即可光还原CO2为甲醇、甲醛、甲酸等产物,在光照反应10 h后总产量最高可达2903.83μmol/ g-catal。  相似文献   

17.
Over the last several years,the need to find clean and renewable energy sources has increased rapidly because current fossil fuels will not only eventually be depleted,but their continuous combustion leads to a dramatic increase in the carbon dioxide amount in atmosphere.Utilisation of the Sun’s radiation can provide a solution to both problems.Hydrogen fuel can be generated by using solar energy to split water,and liquid fuels can be produced via direct CO2 photoreduction.This would create an essentially free carbon or at least carbon neutral energy cycle.In this tutorial review,the current progress in fuels’ generation directly driven by solar energy is summarised.Fundamental mechanisms are discussed with suggestions for future research.  相似文献   

18.
Dario Delgado 《Chemphyschem》2019,20(15):1908-1911
The purpose of this research idea is to develop a method to electrochemically convert carbon dioxide into higher alcohol chains such as ethanol to be used as fuel. Electrochemical CO2 reduction has low yields and poor product selectivity, being able to improve this reaction would have an impact in the energy and food market. We propose the use of a modified nanofluidic transistor to block reaction steps that are thermodynamically favored by constraining the kinetics of the reaction when the reaction takes place in a geometrically restricted environment with different double layer properties to those found in conventional planar electrosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号