首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
蓝奔月  史海峰 《物理化学学报》2015,30(12):2177-2196
传统化石能源燃烧产生CO2引起的地球变暖和能源短缺已经成为一个严重的全球性问题. 利用太阳光和光催化材料将CO2还原为碳氢燃料, 不仅可以减少空气中CO2浓度, 降低温室效应的影响, 还可以提供碳氢燃料, 缓解能源短缺问题, 因此日益受到各国科学家的高度关注. 本文综述了光催化还原CO2为碳氢燃料的研究进展, 介绍了光催化还原CO2的反应机理, 并对现阶段报道的光催化还原CO2材料体系进行了整理和分类, 包括TiO2光催化材料, ABO3型钙钛矿光催化材料, 尖晶石型光催化材料, 掺杂型光催化材料, 复合光催化材料, V、W、Ge、Ga基光催化材料及石墨烯基光催化材料. 评述了各种材料体系的特点及光催化性能的一些影响因素. 最后对光催化还原CO2的研究前景进行了展望.  相似文献   

2.
随着能源短缺和环境问题日益突出, 寻找清洁和可再生能源来替代化石燃料是本世纪科学家面临的最紧迫的任务之一. 为了实现我国“双碳”战略目标, 利用太阳能将二氧化碳(CO2)转化为清洁燃料和化学品是实现社会可持续发展的途径之一. 催化剂是CO2光还原技术的核心组成部分, 其可以吸附气态CO2分子, 在可见光照射下将CO2还原为一氧化碳(CO)、 甲酸(HCOOH)、 甲醇(CH3OH)或甲烷(CH4)等能源小分子. 目前, 新型CO2还原光催化体系的开发取得了很好的进展. 本文综合评述了近年来均相及非均相丰产金属卟啉类催化剂在光催化CO2还原中的研究进展, 并对在金属卟啉均相催化剂作用下, CO2光还原为CO或CH4的反应机理分别进行了介绍, 还讨论了金属卟啉基多孔有机聚合物与卟啉有机金属框架在光催化CO2方面的重要应用. 最后, 对可见光驱动卟啉类金属配合物催化的CO2还原的发展前景进行了展望.  相似文献   

3.
光催化还原CO2的研究现状和发展前景   总被引:1,自引:0,他引:1  
吴聪萍  周勇  邹志刚 《催化学报》2011,(10):1565-1572
综述了光催化还原CO2的研究进展,并重点介绍了本课题组在光催化还原CO2为碳氢燃料方面的研究工作,通过该途径可降低CO2在大气中的排放浓度,还可将CO2转化为烷烃、醇或其它有机物质,从而实现碳材料的再循环使用.最后展望了该研究领域的前景.  相似文献   

4.
李旭力  李宁  高旸钦  戈磊 《催化学报》2022,43(3):679-707
随着全球经济的快速发展,能源短缺与环境污染成为当今世界共同关注的热点问题,开发和利用洁净能源成为当务之急.近年,以半导体为基础的光催化技术引起了国内外的广泛关注,其中包括光催化分解水制氢、光催化还原CO2、光催化固氮以及光催化降解污染物等.尤其太阳能驱动的光催化分解水和光催化CO2还原均可将太阳能转化为可储存和运输的化...  相似文献   

5.
<正>能源短缺和二氧化碳排放引起的全球变暖是人类社会可持续发展所面临的主要问题。同时解决这两大问题的一条理想途径是利用催化剂和太阳能,通过人工光合作用将二氧化碳转化为有用的化学燃料或原料~1。要实现这一过程,关键在于设计合成高效、高选择性的CO2还原催化剂,并与光敏剂耦合构建高效光催化反应体系~2。目前文献报道的光催化CO_2还原生成CO催化剂的催化效率不高3-5,其催化转化数(TON)和转化频率(TOF)分  相似文献   

6.
利用大自然丰富的太阳能驱动水、二氧化碳或氮气转化为高附加值燃料(如H2, CO, CH4, CH3OH或NH3等),实现人工光合成,将储量丰富的太阳能转化为可利用的清洁化学能源,被认为是解决能源短缺和环境问题的关键技术之一,能够有效缓解能源危机和全球变暖,极具应用前景.因此,各种类型的光催化剂相继被开发出来,以满足光催化的需求.其中钴基多相催化剂是最有前途的光催化剂之一,它可以通过扩大光吸收范围、促进电荷分离、提供活性位点和降低反应能垒等途径有效提高光催化效率,为太阳能燃料转化利用开辟广阔的前景.本文首先介绍了光催化水分解、CO2还原和N2还原的基本原理.然后,总结了基于钴基催化剂的改性策略,包括形貌、晶面、结晶度、掺杂和表面修饰,重点讨论了钴基多相材料在水分解(产氢、产氧和全解水)、二氧化碳还原以及氮还原领域的光催化进展.最后,对钴基光催化剂当前面临的挑战和未来的发展作了展望和总结.提出了钴基光催化剂未来的一些研究方向.包括:(1)基于材料光催化体系的设...  相似文献   

7.
半导体光催化剂吸收太阳光分解水制氢或还原CO2,实现了太阳能燃料生产,不仅可获取清洁、可再生、高热值的太阳能燃料,还能有效减少CO2的排放.层状双金属氢氧化物(LDHs)是一类基于水镁石结构的二维阴离子黏土矿物材料,具有独特的层状结构、主体层金属阳离子可调性、客体阴离子可交换、多维结构和可分层等优势,在CO2还原、光电催化水产氧及光解水制氢等领域研究广泛,有望成为新型半导体光催化材料.但单纯LDHs载流子迁移率低和电子空穴复合率高,在太阳辐射下的量子效率非常低.因此,研究人员采用缺陷控制、设计多维结构或偶联不同类型半导体构建异质结等方法,获得高能量转换效率的LDH基光催化剂.本文首先总结了传统光催化剂的优缺点及其能带分布,阐述了LDHs的六个主要方面特性,包括主体层板金属阳离子可调性、客体阴离子插层、热分解、记忆效应、多维结构特征及分层,进而提出LDH基光催化材料在增强反应物吸附活化、扩宽吸光范围、抑制光生载流子与空穴复合三个方面的改性策略.然后,分析了LDH光催化剂的光催化水解产氢反应机理,并从材料结构与性能的关联,概述LDH基复合光催化剂(金属硫化物LDH复合材料、金属氧化物LDH复合材料、石墨相氮化碳LDH复合材料)、三元LDH基光催化剂及混合金属氧化物光催化剂在水分解制氢领域的研究进展.最后,分析了LDH光催化还原CO2反应机理,归纳石墨相氮化碳复合LDH材料、MgAl-LDH基复合光催化剂、CuZn-LDH光催化剂及其它半导体系列LDH的结构特点和在还原CO2领域的研究进展.尽管LDH基光催化剂研究取得了一定的进展,但是对LDH的结构调控及其光催化机理仍需进一步探索,光催化活性位点、不同组分之间的协同作用和界面反应机理还有待进一步研究.未来LDH在光催化领域的应用可以微观尺度调控和宏观性能为导向设计,进一步研究不同组分的协同效应、界面反应及材料组成对物理化学性质的影响,不断完善LDH基光催化剂的理论系统和开发其应用潜能.  相似文献   

8.
周天辰  何川  张亚男  赵国华 《化学进展》2012,(10):1897-1905
CO2为温室气体的主要成分,同时也是潜在的碳能源。本文主要介绍了近年来利用光催化、电催化以及光电催化3种不同催化方法还原CO2的研究现状。文章综述了催化剂材料和催化反应体系对CO2还原效果的影响。从催化效率,光、电转化效率,选择性和能耗等不同角度进行了比较和评价。细致地讨论分析了各种催化还原方法的反应机理,并对催化还原CO2研究的发展方向和应用前景进行了展望。  相似文献   

9.
张庆贺  夏阳  曹少文 《催化学报》2021,42(10):1667-1676
采用悬浮体系进行光催化CO2还原反应是将半导体光催化剂均匀分散到液相中,但液相中有限的CO2溶解度和扩散速率,极大限制了光催化还原CO2反应的活性和选择性.为了提高悬浮体系的CO2还原活性,研究人员进行了一系列研究,包括开发新材料、形貌调控、复合光催化剂和用CO2饱和溶液代替纯水等.但这些改进策略对CO2还原活性的提升是有限的,仍然难以达到实际应用的要求.近年来,关于催化剂的设计和制备方面取得较大进步,但仅有极少数的研究致力于构建有效的光催化体系.实际上,光催化体系的构建与催化剂的设计和制备同样重要,因为理想的光催化CO2还原体系会使CO2反应气体与光催化剂的相互作用最大化,从而提高CO2还原反应的效率.近年来,可以建立气-液-固三相接触界面的疏水基底材料被广泛研究并应用于许多领域,包括燃料电池、光催化、电催化和有机合成等.这种独特的界面体系可以使反应气体到达反应界面并吸附在催化剂表面,从而提高了许多涉及气体的多相反应的反应速率.在传统的固-液两相体系中,气体传输通常是限制反应速率的因素,疏水基底的引入则可以很好地解决这一问题.氮化碳(g-C3N4)作为一种聚合物半导体,具有可见光响应能力,并且光生电子具有足够的还原能力满足还原CO2的需求,这使得它逐渐成为光催化CO2还原领域的明星材料.本文把g-C3N4作为光催化剂负载到疏水基底表面,构建气-液-固三相光催化体系并用于研究光催化CO2还原反应活性.以三聚氰胺为前驱体,采用化学气相沉积法在亲、疏水碳纤维纸表面生长g-C3N4光催化剂来构建新型气-液-固三相光催化体系,该体系可以增强CO2的传输和吸附能力,并形成气-液-固(CO2-H2O-光催化剂)三相反应界面,使得光催化CO2还原反应的活性和选择性显著提高.借助于疏水表面,气态物质可以连续不断地输送到光催化剂表面,而不仅依赖于溶解在液相中的微量CO2气体.因此,催化剂表面可以保持有较高的CO2和较低的H+浓度,在抑制析氢反应的同时增强CO2还原反应.研究结果表明,与亲水样品相比,疏水样品的CO2还原效率显著提高并明显抑制了析氢反应,其光催化CO2还原反应的选择性达到78.6%.另外,氧化半反应通常是光催化CO2还原反应的限制因素,会导致光生空穴的大量聚集,阻碍光生载流子的分离与传递,进而影响整体的光催化转化率.研究结果表明,使用磷酸盐溶液代替纯水进行光催化CO2还原反应性能,可以大幅提高气-液-固三相体系的光催化活性,其总体光催化CO2还原速率达到了1175.5 μmol h-1 m-2,是纯水环境下的8.8倍,CO2还原选择性为93.8%.光催化剂表面的光生空穴可以直接与溶液中的磷酸根离子发生反应,使磷酸盐反应生成过磷酸盐,以代替较难发生的产氧半反应.  相似文献   

10.
光催化可利用充足的太阳能分解水制氢以及降解各种有机污染物, 同时还可以将CO2还原成有机低碳燃料, 是解决当今所面临的能源和环境问题最理想的技术途径之一.目前, 红外光谱仪只能对光催化材料的分子结构进行常规分析, 无法对其进行光照过程的实时监测, 也无法实现光照时光催化反应机理的实时探测与表征.光催化材料原位红外池系统可以实现光催化材料光照过程的实时监测, 从而解析原位红外光催化的反应机理, 实现光照时光催化材料反应机理的实时探测与表征.系统为光催化材料的测试研究提供了有力的技术保障, 是红外光谱仪功能开发的重要技术创新.  相似文献   

11.
杨帆  邓培林  韩优嘉  潘静  夏宝玉 《电化学》2019,25(4):426-444
由于不断增加的二氧化碳排放导致全球变暖,且能源短缺等问题日益恶化,将二氧化碳电化学还原为高附加值化学品和燃料引起了极大的兴趣,设计高效催化剂对实现二氧化碳的高效选择性转化具有重要意义. 在所探索的各种催化剂中,铜基催化剂具有良好的开发潜力,可用于烃类生产. 本文综述了铜基电化学二氧化碳转化材料的最新进展. 分别从尺寸结构到不同形式(合金、氧化物)的铜基催化剂,以及分子催化剂等方面展开,重点讨论铜基催化剂上二氧化碳电解还原的反应机理. 最后,对未来高效铜基催化剂的设计提出展望,以促进二氧化碳转化的可持续发展.  相似文献   

12.
陈钱  匡勤  谢兆雄 《化学学报》2021,79(1):10-22
近几十年来,由温室效应所导致的气候变暖、海平面上升等环境问题日趋严重,科学家们一直致力于研究可高效转化二氧化碳(CO2)等温室气体的技术.以太阳能为驱动力的光催化技术,可将CO2转化成甲烷、甲醇、甲酸或C2+等高附加值的碳氢燃料,同时缓解温室效应和能源危机.二维(2D)材料因具有超大的比表面积和独特的电子结构,在光催化...  相似文献   

13.
Industrialization undoubtedly boosts economic development and improves the standard of living; however, it also leads to some serious problems, including the energy crisis, environmental pollution, and global warming. These problems are associated with or caused by the high carbon dioxide (CO2) and sulfur dioxide (SO2) emissions from the burning of fossil fuels such as coal, oil, and gas. Photocatalysis is considered one of the most promising technologies for eliminating these problems because of the possibility of converting CO2 into hydrocarbon fuels and other valuable chemicals using solar energy, hydrogen (H2) production from water (H2O) electrolysis, and degradation of pollutants. Among the various photocatalysts, silicon carbide (SiC) has great potential in the fields of photocatalysis, photoelectrocatalysis, and electrocatalysis because of its good electrical properties and photoelectrochemistry. This review is divided into six sections: introduction, fundamentals of nanostructured SiC, synthesis methods for obtaining nanostructured SiC photocatalysts, strategies for improving the activity of nanostructured SiC photocatalysts, applications of nanostructured SiC photocatalysts, and conclusions and prospects. The fundamentals of nanostructured SiC include its physicochemical characteristics. It possesses a range of unique physical properties, such as extreme hardness, high mechanical stability at high temperatures, a low thermal expansion coefficient, wide bandgap, and superior thermal conductivity. It also possesses exceptional chemical characteristics, such as high oxidation and corrosion resistance. The synthesis methods for obtaining nanostructured SiC have been systematically summarized as follows: Template growth, sol-gel, organic precursor pyrolysis, solvothermal synthesis, arc discharge, carbon thermal reduction, and electrospinning. These synthesis methods require high temperatures, and the reaction mechanism involves SiC formation via the reaction between carbon and silicon oxide. In the section of the review involving the strategies for improving the activity of nanostructured SiC photocatalysts, seven strategies are discussed, viz., element doping, construction of Z-scheme (or S-scheme) systems, supported co-catalysts, visible photosensitization, construction of semiconductor heterojunctions, supported carbon materials, and construction of nanostructures. All of these strategies, except element doping and visible photosensitization, concentrate on enhancing the separation of holes and electrons, while suppressing their recombination, thus improving the photocatalytic performance of the nanostructured SiC photocatalysts. Regarding the element doping and visible photosensitization strategies, element doping can narrow the bandgap of SiC, which generates more holes and electrons to improve photocatalytic activity. On the other hand, the principle of visible photosensitization is that photo-induced electrons move from photosensitizers to the conduction band of SiC to participate in the reaction, thus enhancing the photocatalytic performance. In the section on the applications of nanostructured SiC, photocatalytic H2 production, pollutant degradation, CO2 reduction, photoelectrocatalytic, and electrocatalytic applications will be discussed. The mechanism of a photocatalytic reaction requires the SiC photocatalyst to produce photo-induced electrons and holes during irradiation, which participate in the photocatalytic reaction. For example, photo-induced electrons can transform protons into H2, as well as CO2 into methane, methanol, or formic acid. Furthermore, photo-induced holes can convert organic waste into H2O and CO2. For photoelectrocatalytic and electrocatalytic applications, SiC is used as a catalyst under high temperatures and highly acidic or basic environments because of its remarkable physicochemical characteristics, including low thermal expansion, superior thermal conductivity, and high oxidation and corrosion resistance. The last section of the review will reveal the major obstacles impeding the industrial application of nanostructured SiC photocatalysts, such as insufficient visible absorption, slow reaction kinetics, and hard fabrication, as well as provide some ideas on how to overcome these obstacles.   相似文献   

14.
将大气中的二氧化碳(CO2)转化为燃料或高附加值化学品是降低大气中CO2含量、 减缓温室效应的有效途径之一. 光催化CO2化学转化条件温和, 能耗低, 在CO2转化中占有重要地位. 金属-有机框架(MOF)基材料由于具有比表面积大、 光电性质优良和可调节性强等特点, 是CO2光催化转化的常用催化剂之一. 本文综合评述了近两年MOF基材料在光催化CO2还原反应、 CO2环加成反应和CO2羧基化反应中的应用, 阐释了MOF基材料在CO2光催化转化中的优势和局限性, 并展望了其未来发展.  相似文献   

15.
工业化无疑促进了经济的发展,提高了生活水平,但也导致了一些问题,包括能源危机、环境污染、全球变暖等, 其中这些所产生问题主要是由燃烧煤炭、石油和天然气等化石燃料引起的。光催化技术具有利用太阳能将二氧化碳转化为碳氢化合物燃料、从水中制氢、降解污染物等优点,从而在解决能源危机的同时避免环境污染,因此被认为是解决这些问题的最有潜力的技术之一。在各种光催化剂中,碳化硅(SiC)由于其优良的电学性能和光电化学性质,在光催化、光电催化、电催化等领域具有广阔的应用前景。本文首先系统地阐述了各种SiC的合成方法,具体包括模板生长法、溶胶凝胶法、有机前驱物热解法、溶剂热合成法、电弧放电法,碳热还原法和静电纺丝等方法。然后详细地总结了提升SiC光催化活性的各种改性策略,如元素掺杂、构建Z型(S型)体系、负载助催化剂、可见光敏化、构建半导体异质结、负载炭材料、构建纳米结构等。最后重点论述了半导体的光催化机理以及SiC复合物在光催化产氢、污染物降解和CO2还原等领域的应用研究进展,并提出了前景展望。  相似文献   

16.
CO_2是最常见的化合物,作为潜在的碳一资源,可用于制备多种高附加值的化学品,如一氧化碳、甲烷、甲醇、甲酸等。传统的热催化转化CO_2方法能耗高,反应条件苛刻。因此,如何在温和条件下高效地将CO_2转化成高附加值的化学品,一直以来是催化领域的研究热点和难点之一。光催化技术反应条件温和、绿色环保。然而,纯光催化反应普遍存在太阳能利用效率有限,光生载流子分离效率低等问题。针对上述问题,在光催化的基础上引入电催化,可以提高载流子的分离效率,在较低的过电位下,实现多电子、质子向CO_2转移,从而提高催化反应效率。总之,光电催化技术可以结合光催化和电催化的优势,提高CO_2催化还原反应效率,为清洁、绿色利用CO_2提供了一种新方法。本文依据光电催化CO_2还原反应基本过程,从光吸收、载流子分离和界面反应等三个角度综述了光电催化反应的基本强化策略,并对未来可能的研究方向进行了展望。  相似文献   

17.
Carbon dioxide (CO2) is one of the main greenhouse gases in the atmosphere. The conversion of CO2 into solar fuels (CO, HCOOH, CH4, CH3OH, etc.) using artificial photosynthetic systems is an ideal way to utilize CO2 as a resource and reduce CO2 emissions. A typical artificial photosynthetic system is composed of three key components: a photosensitizer (PS) to harvest visible light, a catalyst (C) to catalyze CO2 or protons into carbon-based fuels or H2, respectively, and a sacrificial electron donor (SED) to consume the holes generated in the PS. In most cases, the PS and catalyst are two different components of a system. However, some components that possess both light harvesting and redox catalysis functionalities, e.g., nano-semiconductors, are referred to as photocatalysts. During photocatalysis, the PS is typically excited by photons to generate excited electrons. The excited electrons in the PS are transferred to the catalyst to generate a reduced catalyst. The reduced catalyst is used as an active intermediate to perform CO2 binding and transformation. The PS can be recovered through a reaction with the SED. Nano-semiconductors have been used as photosensitizers and/or photocatalysts in photocatalytic CO2 reduction systems owing to their excellent photophysical and photochemical properties and photostability. CdS and CdSe nano-semiconductors, such as quantum dots, nanorods, and nanosheets, have been widely used in the construction of photocatalytic CO2 reduction systems. Systems based on CdS or CdSe nano-semiconductors can be classified into three categories. The first category is systems based on CdS or CdSe photocatalysts. In these systems, CdS or CdSe nano-semiconductors function as photocatalysts to catalyze CO2 reduction without a co-catalyst under visible-light irradiation. The CO2 reduction reaction occurs at the surface of the CdS or CdSe nano-semiconductors. The second category is systems based on CdS or CdSe composite photocatalysts. CdS or CdSe nano-semiconductors are combined with functional materials, such as reduced graphene oxide or TiO2, to prepare composite photocatalysts. These composite photocatalysts are expected to improve the lifetime of the charge separation state and inhibit the photocorrosion of the nano-semiconductors during photocatalysis. The third category is hybrid systems containing a CdS nano-semiconductor and molecular catalysts, such as nickel and cobalt complexes and iron porphyrin. In these hybrid systems, CdS functions as a photosensitizer and the CO2 reduction reaction occurs at the molecular catalyst. This review article introduces the construction of artificial photosynthetic systems and the photocatalytic mechanism of nano-semiconductors, and summarizes the representative works in the three aforementioned categories of systems. Finally, the challenges of nano-semiconductors for photocatalytic CO2 reduction are discussed.  相似文献   

18.
光催化还原CO2为碳氢燃料常被称为人工光合成技术,是21世纪的梦幻技术之一,越来越受到研究者的重视。本文综述了作者课题组在调控半导体纳米催化剂的结构及其光催化还原CO2为碳氢燃料的一些进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号