首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SnO2-ZnO hollow nanofibers were fabricated through a facile single capillary electrospinning technology. The structure and toluene sensing properties of the hollow fibers were investigated. The results indicated that the fibers possess a hollow structure, a rough porous surface after being annealed at 600 °C and the diameters are in the range of 80-160 nm. A sensor fabricated from these fibers exhibits considerable sensitivity and good stability against toluene at 190 °C, which can be attributed to the special 1D hollow structure and the promoting effect of the SnO2/ZnO heterojunction. The formation mechanism and toluene sensing mechanism of SnO2-ZnO hollow nanofibers were also discussed.  相似文献   

2.
Electrospinning is a process by which polymer nanofibers (with submicron scale diameters) can be formed when a droplet of viscoelastic polymer solution is subjected to high voltage electrostatic field. As this droplet travels in air, the solvent evaporates leaving behind a charge fiber that can be electrically deflected on a substrate. A series of nanofibers with various wt.% of PMMA (poly-methyl-methacrylate) to acetone were produced and characterized regarding their morphology and chemical composition. The nanofibers were characterized by Secondary Electron Microscopy, Atomic force microscopy and X-ray photoelectron spectroscopy.  相似文献   

3.
Terbium-doped lanthanum oxide (La2O3:Tb3+) nanofibers were prepared by electrospinning followed by calcination at high temperature. Thermogravimetric analyzer (TGA), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence (PL) were used to characterize the obtained fibers. The results reveal that the nanofibers have an average diameter of ca. 95±25 nm and are composed of pure La2O3 phase. Under the excitation of 274 nm light, the La2O3:Tb3+ nanofibers exhibit the characteristic emission resulting from the 5D47FJ (J=3, 4, 5, 6) transitions of Tb3+ ions. And the PL emission intensity is stronger than that of their nanoparticle counterparts.  相似文献   

4.
In this work, Co-doped ZnO nanofibers have been fabricated successfully by an electrospinning technique. The as-prepared nanofibers are characterized by themogravimetric analysis (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman spectra and photoluminescence spectroscopy (PL). Results have showed that a wurtzite ZnO nanofibers were obtained and the PL spectrum showed a red-shift by 10 nm due to narrowing of the ZnO band gap (∼3.29 eV) as a result of Co doping. Meanwhile, Raman scattering spectra exhibited an unusual peak at 540 cm−1.  相似文献   

5.
Singly distributed YBO3:Eu nanofibers with an average diameter of around 120 nm were fabricated using the electrospinning technique and characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The luminescent properties of the YBO3:Eu nanofibers were studied relative to the corresponding bulk material. The location of the charge transfer band in the excitation spectra shows a slight blueshift in the nanofibers compared with the bulk material. In the emission spectra, the ratio of the red emission at 611 nm to the orange emission at 591 nm (R/O value) in the nanofibers increased slightly, in contrast to the bulk, indicating that improved chromaticity can be obtained from YBO3:Eu nanofibers. The high color-rendering index obtained from them implies that these novel luminescent fibers can be used as potential candidates for nanodevices.  相似文献   

6.
Dye-doped polymer micro- and nanofibers with tailored light emission properties have great potential for applications in optical, optoelectronic, or photonic devices. In this study, these types of structures were obtained by electrospinning rhodamine 6 G-doped polyvinylpyrrolidone (PVP) using a polymer solution of 10% (mass) concentration in ethanol. Polymer nanofibers with different morphologies (smooth and beaded) and diameters of about 500 nm were obtained using different electrospinning conditions with the same solutions. Fluorescence optical microscopy observations showed that the dye was distributed uniformly in the doped PVP nanofibers. Different shifts were observed when we compared the wavelength of the dye emission band peak of the smooth nanofibers (566 nm) and the wavelength of the dye emission band peak of the beaded fibers (561.5 nm) produced by electrospinning in different conditions with the wavelength of the emission band peak for transparent thin films produced by spin coating (558 nm) using the same polymer solution. This demonstrates that it is possible to tune the optical properties of electrospun dye-doped polymer nanofibers simply by modifying the morphology of the material, i.e., the parameters of the electrospinning process.  相似文献   

7.
Electrospinning is a straightforward method to produce micro/nanoscale fibers from polymer solutions typically using an operating voltage of 10 kV–30 kV and spinning distance of 10 cm–20 cm. In this paper, polyvinyl pyrrolidone (PVP) non-woven nanofibers with diameters of 200 nm–900 nm were prepared by low-voltage near-field electrospinning with a working voltage of less than 2.8 kV and a spinning distance of less than 10 mm. Besides the uniform fibers, beaded-fibers were also fabricated and the formation mechanism was discussed. Particularly, a series of experiments were carried out to explore the influence of processing variables on the formation of near-field electrospun PVP nanofibers, including concentration, humidity, collecting position, and spinning distance.  相似文献   

8.
Electrospinning is one of the simple technical methods for the production of polymer nanoparticles and nanofibers. Various polymers have been successfully electrospun into ultrafine particles and fibers in recent years mostly in solvent solution and some in melt form. In this work, near- and supercritical CO2 were used as media for this process. At these conditions, the solubility can be tuned by controlling the temperature and pressure. Therefore, it is possible to form particles and fibers within a thermodynamic window where the biopolymer has been softened, but not dissolved. The experiments were conducted by using electrospinning under pressurized CO2 system at pressures of ~ 8.0 MPa and temperature of 313 K to produce several polymers fibers. Polyvinylpyrrolidone was used as the starting material. During the electrospinning process, the applied voltage was 10–17 kV and the distance of nozzle and collector was 8 cm. The concentration of polymer solution was 4 wt%. The morphology- and structure-produced fibers were observed by scanning electron microscopy. The results showed that temperature and pressure affected the morphology of fibers produced by electrospinning in pressurized CO2. This suggests that the thermal behavior of the polymer can be optimized by adjusting the polymer through the adjustment of pressure and temperature by using CO2 as a solvent.  相似文献   

9.
We present the synthesis, magnetic and UV spectrometry of NiZn-ferrite nanofiber. The single phase of spinel ferrite was obtained at 600 °C. The NiZn-ferrite fibers fabricated by an electrospinning process were formed as a polygonal grain growth with firing temperature in fiber matrix. It appeared that the saturation magnetization (MS) of NiZn-ferrite nanofiber was dependent on Ni/Zn molar ratio which is similar to that of the inverse spinel ferrites. The NiZn-ferrite fibers showed good DNA adsorption efficiency that can be modified and utilized for DNA separation with magnetic nanofiber as a novel material in clinical applications.  相似文献   

10.
Ying Su 《中国物理 B》2022,31(5):57305-057305
Pr0.5Sr0.5FeO3 (PSFO) and La0.25Pr0.25Sr0.5FeO3 (LPSFO) nanofibers are prepared by electrospinning followed by calcination, and their morphologies, microstructures, electronic transports, and magnetic properties are studied systematically. The temperature-dependent resistance curves of PSFO and LPSFO nanofibers are measured in a temperature range from 300 K to 10 K. With the temperature lowering, the resistance increases gradually and then decreases sharply due to the occurrence of ferromagnetic metal phase. The metal-insulator transition temperatures are about 110 K and 180 K for PSFO and LPSFO nanofibers, respectively. The electronic conduction behavior above the transition temperature can be described by one-dimensional Mott's variable-range hopping (VRH) model. The hysteresis loops and the field-cooled (FC) and zero-field-cooled (ZFC) curves show that both PSFO nanofiber and LPSFO nanofiber exhibit ferromagnetism. Although the doping of La reduces the overall magnetization intensity of the material, it increases the ferromagnetic ratio of the system, which may improve the performance of LPSFO in solid oxide fuel cell.  相似文献   

11.
To make p-type diluted magnetic semiconductor (DMS), Ni1−xFexO nanofibers with different Fe doping concentrations have been successfully synthesized by electrospinning method using polyvinyl alcohol (PVA) and Ni(CH3COO)2·4H2O as starting materials. The nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, superconductivity quantum interference device (SQUID) and X-ray photoelectron spectroscopy (XPS) test. The results show that Fe doping has no influence on the diameter and surface morphology of NiO nanofibers, and the nanofibers are polycrystalline with NaCl structure. All Fe-doped samples show obvious ferromagnetic properties and the saturation magnetization is enhanced with increase of the doping concentration of Fe, which indicates that the doped Fe has been incorporated into the NiO host and results in room-temperature ferromagnetism in the Ni1−xFexO nanofibers.  相似文献   

12.
13.
Using a sol-gel processing and electrospinning technique, extrathin fibers of PVA (polyvinyl alcohol)/lithium chloride/cobalt acetate composite were prepared. After calcinations of the above precursor fibers at 600°C, LiCoO2 nanofibers with a diameter of 100-150 nm, were successfully obtained. Measurements of TG/DTA, IR, XRD, Raman, SEM, EDS, respectively, were performed to characterize the properties of the as-prepared materials. We observed a strong correlation between crystalline phase and morphology of the fibers and calcinations temperature.  相似文献   

14.
张敏  刘畅  任博  严凯  陈长军  王晓南 《中国光学》2016,9(3):335-341
采用3D打印激光熔化技术制备了多孔镍基合金,并对其显微组织构成和压缩力学性能进行了分析。研究结果表明,采用3D打印激光熔化技术制备的多孔镍合金,孔隙率为14.68%~18.97%、抗压强度为461~535 MPa,其微观组织主要呈现γ-Ni枝晶,压缩断口为撕裂式枝晶断裂。  相似文献   

15.
Ce-substituted barium ferrite with chemical composition BaCe0.05Fe11.95O19 has been prepared by the citrate sol-gel method. The phase composition of BaCe0.05Fe11.95O19 was characterized by X-ray powder diffraction analysis (XRD). The complex permittivity and complex permeability, microwave absorption properties of the resulting powder were measured by the transmission/reflection coaxial line method in the range of 8-13 GHz. The results show that the resulting powder has a minimum reflection loss value of - 37.4 dB at 12.8 GHz with a matching thickness of 3.5 mm.  相似文献   

16.
The surface of carbonyl iron powder or a mixture of carbonyl iron and ferrite was coated with polymethylmethacrylate (PMMA) microspheres by a hybridization method to make hybrid powders, and then electromagnetic wave absorption properties of the hybrid composites prepared with these hybrid powders have been investigated. As for the carbonyl iron/PMMA hybrid composite, the reflection loss less than −20 dB could be achieved in a frequency range of 1.7–5.0 GHz when the composite thickness was below 5.00 mm. In the case of the carbonyl iron-ferrite/PMMA hybrid composite, a similar reflection loss was observed in a frequency range of 4.3–13.0 GHz. Thus, the addition of ferrite was found to be useful for achieving a large absorption in a wide frequency range, especially for higher frequency values. Simulated values for the minimum reflection loss are well agreed with actually measured ones, because of homogeneous distribution of carbonyl iron and/or ferrite in these hybrid composites.  相似文献   

17.
Nickel nanoparticles were fabricated by ablating a bulk Ni target with pulsed 337-nm laser radiation in distilled water. Transmission electron microscope images of the removed material show spherical particles with two size scales: tens of nm and hundreds of nm. Phase explosion and Rayleigh–Plateau hydrodynamic instability are suggested as being responsible for this distribution. An X-ray diffraction pattern of the ablated material demonstrates the presence of both nickel and nickel oxide.  相似文献   

18.
Microwave absorption properties of composite powders with low density   总被引:1,自引:0,他引:1  
The composites of barium ferrite coated on hollow ceramic microspheres were prepared using sol-gel technique. The crystal structure, morphology and microwave absorption properties of composite powders with different weight ratio of microspheres were studied with XRD, EDS, FESEM and vector network analyzer. The results show that the microwave absorption properties of composite powders are greatly improved. The maximum microwave loss of composite powders reaches 31 dB with an amount of 50 wt.% microspheres, and its density is only about 1.80 g/cm3. The effect of hollow ceramic microspheres on the microwave absorption property is also discussed.  相似文献   

19.
The rod-shaped Co-Ni-P shells were prepared by metalling Bacillus. The microstructures and composition of the shells were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive analysis (EDS). The electromagnetic parameters were measured by the coaxial line method in the frequency of 2-18 GHz. It was found that the Bacillus were successfully coated with Co-Ni-P, and the inner structure of the shells are hollow in structure. The shells exhibit excellent microwave absorption properties in 5-17 GHz frequency. The microwave reflection loss is above −10 dB in 5.38-16.6 GHz frequency. The maximum microwave reflection loss reaches −35.83 dB at 9.12 GHz for samples thickness 2.4 mm, and the widest bandwidth for microwave reflection loss above −10 dB is about ∼5.32 GHz for samples thickness 2.0 mm. These results confirm the feasibility of applying Bacillus as biotemplates for fabrication of the metallic shells as lightweight microwave absorption materials are very promising for applications.  相似文献   

20.
Electrospinning nanofibers (NFs) made from natural proteins have drawn increasing attention recently. Rapeseed meal is a by-product that rich in protein but not fully utilized due to poor properties. Therefore, modification of rapeseed protein isolates (RPI) is necessary to expand applications. In this study, pH shift alone or ultrasonic-assisted pH shift treatment was adopted, the solubility of RPI, along with the conductivity and viscosity of the electrospinning solution were detected. Moreover, the microstructure and functional characteristics of the electrospinning NFs, as well as the antibacterial activity of clove essential oil loaded-NFs were investigated. The tested parameters were remarkably improved after different treatments compared with the control, and synergistic effects were observed, especially under alkaline conditions. Hence, pH12.5 + US showed the maximum value of solubility, conductivity, and viscosity, which was more than 7-fold, 3-fold, and almost 1-fold higher than the control respectively. Additionally, SEM and AFM images showed a finer and smoother surface of NFs after treatments, and the finest diameter of 216.7 nm was obtained after pH12.5 + US treatment in comparison with 450.0 nm in control. FTIR spectroscopy of NFs demonstrated spatial structure changes of RPI, and improved thermal stability and mechanical strength of NFs were achieved after different treatments. Furthermore, an inhibition zone with a diameter of 22.8 mm was observed from the composite NFs. This study indicated the effectiveness of ultrasonic-assisted pH shift treatment on the physicochemical properties improvement and functional enhancement of NFs made from RPI, as well as the potential antibacterial application of the composite NFs in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号