首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Complexes Containing Antimony Ligands: [tBu2(Cl)SbW(CO)5], [tBu2(OH)SbW(CO)5], O[SbPh2W(CO)5]2, E[SbMe2W(CO)5]2 (E = Se, Te), cis‐[(Me2SbSeSbMe2)2Cr(CO)4] Syntheses of [tBu2(Cl)SbW(CO)5] ( 1 ), [tBu2(OH)SbW(CO)5] ( 2 ), O[SbPh2W(CO)5]2 ( 3 ), Se[SbMe2W(CO)5]2 ( 4 ), cis‐[(Me2SbSeSbMe2)2Cr(CO)4] ( 5 ) Te[SbMe2W(CO)5]2 ( 6 ) and crystal structures of 1 – 5 are reported.  相似文献   

3.
The reaction of Na[η5-C5H5Fe(CO)2] with large excess of SO2 in THF at ?78°C followed by warming to room temperature affords an iron—dithionite complex, (η5-C5H5)(CO)2FeS(O)2S(O)2Fe(CO)25-C5H5).  相似文献   

4.
The complex η55-(CO)3Mn(C5H4-C5H4)(CO)2Fe-η15-C5H4Mn(CO)3 was synthesized by the reaction of η5-Cp(CO)2Fe-η15-C5H4Mn(CO)3 with BunLi (THF, ?78 °C) and then with anhydrous CuCl2. The complex μ-(C≡C)[C5H4(CO)2Fe-η15-C5H4Mn(CO)3]2 was prepared by the reaction of η5-IC5H4(CO)2Fe-η15-C5H4Mn(CO)3 with Me3SnC≡CSnMe3 (2:1) in the presence of Pd(MeCN)2Cl2.  相似文献   

5.
Diphenylcyclopropenethione and dithienylcyclopropenethione react with (acetonitrile)3Cr(CO)3 under mild conditions with formation of (C3Ph2S)Cr(CO)5 and [C3(C4H3S)2S]Cr(CO)5, respectively. Using (η5-C5H5)(THF)Mn(CO)2 and diphenylcyclopropenethione a different type of complex with the stoichiometry (C3Ph2S)2Mn(C5H5)(CO)2 is obtained. A structure with a ligand containing two S bridges is proposed.  相似文献   

6.
Attempts to prepare Fe(CO)5+ from Ag[Al(ORF)4] (RF=C(CF3)3) and Fe(CO)5 in CH2Cl2 yielded the first complex of a neutral metal carbonyl bound to a simple metal cation. The Ag[Fe(CO)5]2+ cation consists of two Fe(CO)5 molecules coordinating Ag+ in an almost linear fashion. The ν(CO) modes are blue‐shifted compared to Fe(CO)5, with one band above 2143 cm?1 indicating that back‐bonding is heavily decreased in the Ag[Fe(CO)5]2+ cation.  相似文献   

7.
Conclusions The photochemical reactions of (CO)2(PPh3)MnC5H4Fe(CO)2C5H5 and (CO)2(PPh3)MnC5H4COFe(CO)2C5H5 with PPh3 gave the products of replacing the CO on the Fe atom by PPh3: respectively (CO)2(PPh3)MnC5H4Fe (CO)(PPh3)C5H5 and (CO)2(PPh3)MnC5H4COFe(CO)(PPh3)C5H5.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2813–2815, December, 1977.  相似文献   

8.
Heterometallic Cluster Complexes of the Types Re2(μ-PR2)(CO)8(HgY) and ReMo(μ-PR2)(η5-C5H5)(CO)6(HgY) (R = Ph, Cy; Y = Cl, W(η5-C5H5)(CO)3) Dinuclear complexes Re2(μ-H)(μ-PR2)(CO)8 and ReMo(μ-H)(μ-PR2)(η5-C5H5)(CO)6 (R = phenyl, cyclohexyl) were deprotonated and reacted as anions with HgCl2 to compounds of the both types Re2(μ-PR2)(CO)8HgCl) and ReMo(μ-PR2)(η5-C5H5)(CO)6(HgCl). The heterometallic three-membered cluster complexes correspond to an isolobal exchange of a proton against a cationic HgCl+ group. For one of the products ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgCl) has been shown its conversion with NaW(η5-C5H5)(CO)3 to ReMo(μ-PCy2)(η5-C5H5)(HgW(η5-C5H5)(CO)3) under substitution of the chloro ligand, par example. The newly prepared compounds were characterized by means of IR, UV/VIS and 31P NMR data. A complete determination of the molecular structure by single crystal analyses was done in the case of Re2(μ-PCy2)(CO)8(HgCl) and of ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgCl) which both are dimer because of the presence of an asymmetric dichloro bridge, and of ReMo(μ-PCy2)(η5-C5H5)(CO)6(HgW(η5-C5H5)(CO)3). The structural study illustrates through comparison the influence of various metal types on an interaction between centric and edge-bridged frontier orbitals in three-membered metal rings.  相似文献   

9.
The reaction between Fe(CO)5, and group V donor ligands L, (L  PPh3, AsPh3, SbPh3, PMePh2, PMe2Ph, Asme2Ph, P(C6H11)3, P(n-Bu)3, P(i-Bu)3, P(OPh)3, P(OEt)3, P(OMe)3) in the presence of [(η5-C5Me5Fe(CO)2]2 (R  H, Me) or [(η5-C5Me5)Fe(CO)2]2 as catalyst in refluxing toluene, rapidly gives the complexes Fe(CO)4L in yields > 85%. The reaction rate is essentially independent of the nature of L for [(η5-C5Me5)Fe(CO)2]2 as catalyst. For the other catalysts, the rate is influenced predominantly by the steric properties of L. These results are interpreted in terms of the interaction between the catalyst and the ligand L to give derivatives of the type (η5-C5H4R)2Fe2,(CO)3,(L). These derivatives were also found to catalyse the reaction between Fe(CO)5, and L. The complexes [(η-C5H4R)Fe(CO)2]2 (R  H, Me) and [(η5-C5Me5)Fe(CO)2]2 also catalyse the reaction between Mn2(CO)10 and PPh3 to give Mn2(CO)8- PPh3)2 in > 80% yield.  相似文献   

10.
The reaction of (η5-C5H5)W(CO)2(NO), 6W, with P(CH3)3 proceeds rapidly at 25°C to give (η5-C5H5)W(CO)(NO)[P(CH3)3], 7W. The rate of formation of 7W was found to be 4.48 × 10?2M?1 [6W] [P(CH3)3] at 25.0°c in THF. In neat P(CH3)3 at ?23°C, 6W is converted to (η1-C5H5)W(CO)2(NO)[P(CH3)3]2, 8W. In dilute solution, 8W decomposes to initially give a 2:1 mixture of 6W and 7W. The mixture is then converted to 7W. The reaction of (η5-C5H5)Mo(CO)(NO), 6Mo, with P(CH3)3 is 6.1 times faster than that of the tungsten analog.  相似文献   

11.
Reactions of Cyclostibanes, (RSb)n [R = (Me3Si)2CH, n = 3; Me3CCH2, n = 4, 5] with the Transition Metal Carbonyl Complexes [W(CO)5(thf)], [CpxMn(CO)2(thf)], [CpxCr(CO)3]2, and [Co2(CO)8]; Cpx = MeC5H4 (RSb)3 [R = (Me3Si)2CH] reacts with [W(CO)5(thf)], [CpxMn(CO)2(thf)], or [Co2(CO)8] to give [(RSb)3W(CO)5] ( 1 ), [RSb{Mn(CO)2Cpx}2] ( 2 ) or [RSbCo(CO)3]2 ( 3 ). The reaction of (R′Sb)n (n = 4, 5; R′ = Me3CCH2) with [CpxCr(CO)3]2 leads to [(R′Sb)4{Cr(CO)2Cpx}2] ( 4 ); Cpx = MeC5H4, thf = Tetrahydrofuran.  相似文献   

12.
η5-C5H5V(NO)2CO is prepared in 40% yield by the photo-reaction between η5-C5H5V(CO)4 and [Co(NO)2Br]25-C5H5V(NO)2CO reacts by an SN1 mechanism with various phosphines PZ3 to yield η5-C5-H5V(NO)2PZ3. The phosphine complexes are also obtained by photo-induced ligand interchange between η5-C5H5V(CO)3PZ3 and [Co(NO)2Br]2, or η5-C5H5V(CO)4 and Co(NO)2Br(PZ3). In all cases, the main cobalt species formed is Co(NO)(CO)3. While the one-bond vanadiumphosphorus coupling constants of most of the phosphine complexes are virtually the same (ca 410 Hz),the chemical shift values δ(51V) (?1328 to ?973 ppm rel. VOCl3) decrease in the order PF3 > CO > P(OR)3 > P(alkyl)3 > PPh3 > PPh(NEt2)2, reflecting the decreasing π-acceptor ability of the ligands. δ(51V) also decreases in the series of alkylphosphines PR3 (R = Me, Et, Prn, Bui, Pri, BUt) as the cone angle of PR3increases.  相似文献   

13.
The reaction of Cp2MCl2 complexes (M=Ti and Zr) with 2 equiv. of (OC)3Mn(η15-C5H4)Fe(CO)25-C5H4COONa) results in the formation of the pentanuclear complexes (OC)3Mn(η15-C5H4)Fe(CO)25-C5H4CO2)]2M(η5-C5H5)2, which are characterized by IR and1H NMR spectroscopy and cyclic voltammetry. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1055–1058, May, 1997.  相似文献   

14.
The course of the reaction of (η5-C5H5)Fe(CO)21-C5H5) with phosphorus donor ligands depends strongly on the nature of the ligand; products derived from an Arbuzov-like rearrangement or from reduction have been found as well as the expected simple substitution product. The dynamic PMR behavior of (η5-C5H5)Fe(CO) (P(OPh)3) (η1-C5H5) has been examined.  相似文献   

15.
Synthesis and Properties of Heteronuclear Metal Atom Clusters Re4(CO)123-GaRe(CO)5]4 and Re2(CO)8[μ-GaRe(CO)5]2 The title compounds were prepared by the reaction of gallium halides and dirhenium decacarbonyl. Crystals of the four-membered cluster Re2(CO)8[μ-GaRe(CO)5]2 gave at 3000C with aggregation of four Re atoms to an inner Re4 tetrahedron the product Re4(CO)12(CO)[μ3-GaRe(CO)5]4and with Ga2I3 shown by mass spectroscopic measurements the molecule ion Re4(CO)16+. In tetra-hydrofuran solution the cluster Re4(CO)123-GaRe(CO)5]4 and the hydride Li[C2H5)3BH] have formed the formyl complex Li4{Re4(CO)123 -GaRe(CO)4(CHO)] 4}, which was estimated by 1H n. m. r. and i. r. spectroscopic data. Both synthesized gallium rhenium carbonyl clusters were characterized by i.r. spectroscopic measurements. The comparison of these results with those of the structurally known indium rhenium carbonyl clusters led to proposals of the molecule structure of the analogous gallium rhenium compounds.  相似文献   

16.
The electron impact induced mass spectra of [CF3SMn(CO)4]2, [CF3SeMn(CO)4]2, [CF3SFe(CO)3]2, [CF3SeFe(CO)3]2, CF3SeFe(CO)2C5H5 and CF3SCr(NO)2C5H5 are reported. These compounds exhibit weak molecular ion peaks and undergo preferential loss of CO or NO groups. The CO or NO free fragments suffer typical loss of ECF2(E = S, Se) with the simultaneous shift of F from carbon to metal. The ions [FFeC5H5]+ and [FCrC5H5]+ in the spectra of the cyclopentadienyl compounds prefer expulsion of π-cyclopentadienyls. The pyrolysis effects on the spectra of the compounds have been studied. An increase in temperature eases the expulsion of ECF2 groups from all the compounds and favors the formation of [Fe(C5H5)2]+ and [Cr(C5H5)2]+ in the cyclopentadienyl compounds.  相似文献   

17.
Sodium cyanoborohydride has been found to be very effective for the conversion of [(h5-C5H5)Fe(CO)2(h2-alkene)]+BF4? complexes to the corresponding h1-alkyl derivatives.  相似文献   

18.
Unusual observations of the photochemistry of CpFe(CO)2Co(CO)4 (Cp = η5-C5H5) are presented. In low temperature matrices (i.e. Ar at 10 K) there are two photochemical pathways (i) reversible CO loss to form CpFeCo(CO)5 and (ii) heterophotolysis leading, in the presence of excess CO, to in situ formation of [CpFe(CO)3]+ and [Co(CO)4]? ions. In N2-doped matrices, a dinitrogen substitution product, CpFeCo(CO)3(N2)(μ-CO)2 is formed. All products are identified from their IR spectra.  相似文献   

19.
Synthesis and Structure of the Phosphorus-bridged Transition Metal Complexes [Fe2(CO)6(PR)6] (R = tBu, iPr), [Fe2(CO)4(PiPr)6], [Fe2(CO)3Cl2(PtBu)5], [Co4(CO)10(PiPr)3], [Ni5(CO)10(PiPr)6], and [Ir4(C8H12)4Cl2(PPh)4] (PtBu)3 and (PiPr)3 react with [Fe2(CO)9] to form the dinuclear complexes [Fe2(CO)6(PR)6] (R = tBu: 1 ; iPr: 2 ). 2 is also formed besides [Fe2(CO)4(PiPr)6] ( 3 ) in the reaction of [Fe(CO)5] with (PiPr)3. When PiPr(PtBu)2 and PiPrCl2 are allowed to react with [Fe2(CO)9] it is possible to isolate [Fe2(CO)3Cl2(PtBu)5] ( 4 ). The reactions of (PiPr)3 with [Co2(CO)8] and [Ni(CO)4] lead to the tetra- and pentanuclear clusters [Co4(CO)10(PiPr)3] ( 5 ), [Ni4(CO)10(PiPr)6] [2] and [Ni5(CO)10(PiPr)6] ( 6 ). Finally the reaction of [Ir(C8H12)Cl]2 with K2(PPh)4 leads to the complex [Ir4(C8H12)4Cl2(PPh)4] ( 7 ). The structures of 1–7 were obtained by X-ray single crystal structure analysis (1: space group P21/c (Nr. 14), Z = 8, a = 1 758.8(16) pm, b = 3 625.6(18) pm, c = 1 202.7(7) pm, β = 90.07(3)°; 2 : space group P1 (Nr. 2), Z = 1, a = 880.0(2) pm, b = 932.3(3) pm, c = 1 073.7(2) pm, α = 79.07(2)°, β = 86.93(2)°, γ = 72.23(2)°; 3 : space group Pbca (Nr. 61), Z = 8, a = 952.6(8) pm, b = 1 787.6(12) pm, c = 3 697.2(30) pm; 4 : space group P21/n (Nr. 14), Z = 4, a = 968.0(4) pm, b = 3 362.5(15) pm, c = 1 051.6(3) pm, β = 109.71(2)°; 5 : space group P21/n (Nr. 14), Z = 4, a = 1 040.7(5) pm, b = 1 686.0(5) pm, c = 1 567.7(9) pm, β = 93.88(4)°; 6 : space group Pbca (Nr. 61), Z = 8, a = 1 904.1(8) pm, b = 1 959.9(8) pm, c = 2 309.7(9) pm. 7 : space group P1 (Nr. 2), Z = 2, a = 1 374.4(7) pm, b = 1 476.0(8) pm, c = 1 653.2(9) pm, α = 83.87(4)°, β = 88.76(4)°, γ = 88.28(4)°).  相似文献   

20.
The cluster anion [Fe33-Se)(CO)9]2- (I) was isolated as a salt (Et4N)2[I] by the reaction of Fe(CO)5 with Na2Se in isopropanol. The protonated form, (μ-H)2Fe33-Se)(CO)9 (II), was obtained by acidifying the reaction mixture and used for the synthesis of the heterometallic cluster FeMo23-Se)(CO)7Cp2 (III), CP=η5-C5H5. The structure of I and III was established by X-ray diffraction analysis. Crystals I are monoclinic, a=14.210(3), b=11.547(3), c=19.831(2), Å, β=90.92(2)°, Vcell=3254(1) Å3, space group P2/c, Z=4, dcalc=1.550 g/cm3, Syntex P21, λCuKα, R(F)=0.1333 for 1264 Fhkl>6σ(Fhkl). Crystals III are monoclinic, a=20.440(5), b=12.771(3), c=16.342(4) Å, β=113.80(2)°, Vcell=3903(2) Å3, space group P21/c, Z=8, dcalc=2.222 g/cm3, Syntex P21, λCuKα, R(F)=0.0734 for 1116 Fhkl>4σ(Fhkl). The structure of II was inferred from the Mössbauer, IR, and1H and77Se NMR spectroscopy data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号